2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Strategies in surface engineering for the regulation of microclimates in skin-medical product interactions

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          There is a growing number of personal healthcare devices that are in prolonged contact with the skin. The functionality of these products is linked to the interface formed by the contact between the medical apparatus and the skin. The interface can be characterised by its topology, compliance, and moisture and thermal regulating capabilities. Many devices are, however, described to have suboptimal and occlusive contacts, resulting in physiological unfavourable microclimates at the interface. The resulting poor management of moisture and temperature can impact the functionality and utility of the device and, in severe cases, lead to physical harm to the user. Being able to control the microclimate is therefore expected to limit medical-device related injuries and prevent associated skin complications. Surface engineering can modify and potentially enhance the regulation of the microclimate factors surrounding the interface between a product's surface and the skin. This review provides an overview of potential engineering solutions considering the needs for, and influences on, regulation of temperature and moisture by considering the skin-medical device interface as a system. These findings serve as a platform for the anticipated progress in the role of surface engineering for skin-device microclimate regulation.

          Graphical abstract

          Related collections

          Most cited references219

          • Record: found
          • Abstract: found
          • Article: not found

          Wound healing dressings and drug delivery systems: a review.

          The variety of wound types has resulted in a wide range of wound dressings with new products frequently introduced to target different aspects of the wound healing process. The ideal dressing should achieve rapid healing at reasonable cost with minimal inconvenience to the patient. This article offers a review of the common wound management dressings and emerging technologies for achieving improved wound healing. It also reviews many of the dressings and novel polymers used for the delivery of drugs to acute, chronic and other types of wound. These include hydrocolloids, alginates, hydrogels, polyurethane, collagen, chitosan, pectin and hyaluronic acid. There is also a brief section on the use of biological polymers as tissue engineered scaffolds and skin grafts. Pharmacological agents such as antibiotics, vitamins, minerals, growth factors and other wound healing accelerators that take active part in the healing process are discussed. Direct delivery of these agents to the wound site is desirable, particularly when systemic delivery could cause organ damage due to toxicological concerns associated with the preferred agents. This review concerns the requirement for formulations with improved properties for effective and accurate delivery of the required therapeutic agents. General formulation approaches towards achieving optimum physical properties and controlled delivery characteristics for an active wound healing dosage form are also considered briefly.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Emerging challenges and materials for thermal management of electronics

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Wearable Health Devices—Vital Sign Monitoring, Systems and Technologies

              Wearable Health Devices (WHDs) are increasingly helping people to better monitor their health status both at an activity/fitness level for self-health tracking and at a medical level providing more data to clinicians with a potential for earlier diagnostic and guidance of treatment. The technology revolution in the miniaturization of electronic devices is enabling to design more reliable and adaptable wearables, contributing for a world-wide change in the health monitoring approach. In this paper we review important aspects in the WHDs area, listing the state-of-the-art of wearable vital signs sensing technologies plus their system architectures and specifications. A focus on vital signs acquired by WHDs is made: first a discussion about the most important vital signs for health assessment using WHDs is presented and then for each vital sign a description is made concerning its origin and effect on heath, monitoring needs, acquisition methods and WHDs and recent scientific developments on the area (electrocardiogram, heart rate, blood pressure, respiration rate, blood oxygen saturation, blood glucose, skin perspiration, capnography, body temperature, motion evaluation, cardiac implantable devices and ambient parameters). A general WHDs system architecture is presented based on the state-of-the-art. After a global review of WHDs, we zoom in into cardiovascular WHDs, analysing commercial devices and their applicability versus quality, extending this subject to smart t-shirts for medical purposes. Furthermore we present a resumed evolution of these devices based on the prototypes developed along the years. Finally we discuss likely market trends and future challenges for the emerging WHDs area.
                Bookmark

                Author and article information

                Contributors
                Journal
                Heliyon
                Heliyon
                Heliyon
                Elsevier
                2405-8440
                01 February 2024
                29 February 2024
                01 February 2024
                : 10
                : 4
                : e25395
                Affiliations
                [a ]Laboratory for Surface Technology and Tribology, Department of Mechanics of Solids, Surfaces and Systems (MS3), Faculty of Engineering Technology, University of Twente, Postbox 217, 7500 AE Enschede, the Netherlands
                [b ]Biomedical Device Design and Production Lab, Department of Biomechanical Engineering (BE), Faculty of Engineering Technology, University of Twente, Postbox 217, 7500 AE Enschede, the Netherlands
                Author notes
                []Corresponding author. h.reuvekamp@ 123456utwente.nl
                Article
                S2405-8440(24)01426-9 e25395
                10.1016/j.heliyon.2024.e25395
                10869805
                b5e278c5-e461-4cdc-bae5-8be945cbee0d
                © 2024 The Authors

                This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

                History
                : 14 August 2023
                : 17 October 2023
                : 25 January 2024
                Categories
                Review Article

                surface engineering,microclimate regulation,personal healthcare device,contact interface,skin-product interaction

                Comments

                Comment on this article