1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      A highly selective and sensitive salamo-salen-salamo hybrid fluorometic chemosensor for identification of Zn2+ and the continuous recognition of phosphate anions

      , ,
      Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references54

          • Record: found
          • Abstract: found
          • Article: not found

          Reaction-based small-molecule fluorescent probes for chemoselective bioimaging.

          The dynamic chemical diversity of elements, ions and molecules that form the basis of life offers both a challenge and an opportunity for study. Small-molecule fluorescent probes can make use of selective, bioorthogonal chemistries to report on specific analytes in cells and in more complex biological specimens. These probes offer powerful reagents to interrogate the physiology and pathology of reactive chemical species in their native environments with minimal perturbation to living systems. This Review presents a survey of tools and tactics for using such probes to detect biologically important chemical analytes. We highlight design criteria for effective chemical tools for use in biological applications as well as gaps for future exploration.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Recent Development of Chemosensors Based on Cyanine Platforms

            The cyanine platforms including cyanine, hemicyanine, and squaraine are good candidates for developing chemosensors because of their excellent photophysical properties, outstanding biocompatibility, and low toxicity to living systems. A huge amount of research work involving chemosensors based on the cyanine platforms has emerged in recent years. This review focuses on the development from 2000 to 2015, in which cyanine, hemicyanine, and squaraine sensors will be separately summarized. In each section, a systematization according to the type of detection mechanism is established. The basic principles about the design of the chemosensors and their applications as bioimaging agents are clearly discussed. In addition, we emphasize the advances that have been made in improving the detection performance through incorporation of the chemosensors into nanoparticles.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Coumarin-derived Cu(2+)-selective fluorescence sensor: synthesis, mechanisms, and applications in living cells.

              A novel coumarin-based fluorogenic probe bearing the 2-picolyl unit (1) was developed as a fluorescent chemosensor with high selectivity and suitable affinity in biological systems toward Cu(2+) over other cations tested. The fluorescence on-off mechanism was studied by femtosecond time-resolved fluorescence (TRF) upconversion technique and ab initio calculations. The receptor can be applied to the monitoring of Cu(2+) ion in aqueous solution with a pH span 4-10. To confirm the suitability of 1 for biological applications, we also employed it for the fluorescence detection of the changes of intracellular Cu(2+) in cultured cells. The results indicate that 1 should be useful for the fluorescence microscopic imaging and the study on the biological functions of Cu(2+).
                Bookmark

                Author and article information

                Journal
                Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy
                Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy
                Elsevier BV
                13861425
                October 2022
                October 2022
                : 278
                : 121340
                Article
                10.1016/j.saa.2022.121340
                b5f8da37-bd2e-40e4-a17b-bf808dccf3eb
                © 2022

                https://www.elsevier.com/tdm/userlicense/1.0/

                https://doi.org/10.15223/policy-017

                https://doi.org/10.15223/policy-037

                https://doi.org/10.15223/policy-012

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-004

                History

                Comments

                Comment on this article