11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mesenchymal Stem Cell Therapy for Spinal Cord Contusion: A Comparative Study on Small and Large Animal Models

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Here, we provide a first comparative study of the therapeutic potential of allogeneic mesenchymal stem cells derived from bone marrow (BM-MSCs), adipose tissue (AD-MSCs), and dental pulp (DP-MSCs) embedded in fibrin matrix, in small (rat) and large (pig) spinal cord injury (SCI) models during subacute period of spinal contusion. Results of behavioral, electrophysiological, and histological assessment as well as immunohistochemistry and real-time polymerase chain reaction analysis suggest that application of AD-MSCs combined with a fibrin matrix within the subacute period in rats (2 weeks after injury), provides significantly higher post-traumatic regeneration compared to a similar application of BM-MSCs or DP-MSCs . Within the rat model, use of AD-MSCs resulted in a marked change in: (1) restoration of locomotor activity and conduction along spinal axons; (2) reduction of post-traumatic cavitation and enhancing tissue retention; and (3) modulation of microglial and astroglial activation. The effect of an autologous application of AD-MSCs during the subacute period after spinal contusion was also confirmed in pigs (6 weeks after injury). Effects included: (1) partial restoration of the somatosensory spinal pathways; (2) reduction of post-traumatic cavitation and enhancing tissue retention; and (3) modulation of astroglial activation in dorsal root entry zone. However, pigs only partially replicated the findings observed in rats. Together, these results indicate application of AD-MSCs embedded in fibrin matrix at the site of SCI during the subacute period can facilitate regeneration of nervous tissue in rats and pigs. These results, for the first time, provide robust support for the use of AD-MSC to treat subacute SCI.

          Related collections

          Most cited references63

          • Record: found
          • Abstract: found
          • Article: not found

          Human dental pulp-derived stem cells promote locomotor recovery after complete transection of the rat spinal cord by multiple neuro-regenerative mechanisms.

          Spinal cord injury (SCI) often leads to persistent functional deficits due to loss of neurons and glia and to limited axonal regeneration after injury. Here we report that transplantation of human dental pulp stem cells into the completely transected adult rat spinal cord resulted in marked recovery of hind limb locomotor functions. Transplantation of human bone marrow stromal cells or skin-derived fibroblasts led to substantially less recovery of locomotor function. The human dental pulp stem cells exhibited three major neuroregenerative activities. First, they inhibited the SCI-induced apoptosis of neurons, astrocytes, and oligodendrocytes, which improved the preservation of neuronal filaments and myelin sheaths. Second, they promoted the regeneration of transected axons by directly inhibiting multiple axon growth inhibitors, including chondroitin sulfate proteoglycan and myelin-associated glycoprotein, via paracrine mechanisms. Last, they replaced lost cells by differentiating into mature oligodendrocytes under the extreme conditions of SCI. Our data demonstrate that tooth-derived stem cells may provide therapeutic benefits for treating SCI through both cell-autonomous and paracrine neuroregenerative activities.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Comparison of molecular profiles of human mesenchymal stem cells derived from bone marrow, umbilical cord blood, placenta and adipose tissue

            Mesenchymal stem cells (MSCs) are clinically useful due to their capacity for self-renewal, their immunomodulatory properties and tissue regenerative potential. These cells can be isolated from various tissues and exhibit different potential for clinical applications according to their origin, and thus comparative studies on MSCs from different tissues are essential. In this study, we investigated the immunophenotype, proliferative potential, multilineage differentiation and immunomodulatory capacity of MSCs derived from different tissue sources, namely bone marrow, adipose tissue, the placenta and umbilical cord blood. The gene expression profiles of stemness-related genes [octamer-binding transcription factor 4 (OCT4), sex determining region Y-box (SOX)2, MYC, Krüppel-like factor 4 (KLF4), NANOG, LIN28 and REX1] and lineage-related and differentiation stage-related genes [B4GALNT1 (GM2/GS2 synthase), inhibin, beta A (INHBA), distal-less homeobox 5 (DLX5), runt-related transcription factor 2 (RUNX2), proliferator-activated receptor gamma (PPARG), CCAAT/enhancer-binding protein alpha (C/EBPA), bone morphogenetic protein 7 (BMP7) and SOX9] were compared using RT-PCR. No significant differences in growth rate, colony-forming efficiency and immunophenotype were observed. Our results demonstrated that MSCs derived from bone marrow and adipose tissue shared not only in vitro trilineage differentiation potential, but also gene expression profiles. While there was considerable interdonor variation in DLX5 expression between MSCs derived from different tissues, its expression appears to be associated with the osteogenic potential of MSCs. Bone marrow-derived MSCs (BM-MSCs) significantly inhibited allogeneic T cell proliferation possibly via the high levels of the immunosuppressive cytokines, IL10 and TGFB1. Although MSCs derived from different tissues and fibroblasts share many characteristics, some of the marker genes, such as B4GALNT1 and DLX5 may be useful for the characterization of MSCs derived from different tissue sources. Collectively, our results suggest that, based on their tri-lineage differentiation potential and immunomodulatory effects, BM-MSCs and adipose tissue-derived MSCs (A-MSCs) represent the optimal stem cell source for tissue engineering and regenerative medicine.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Comparative analysis of human mesenchymal stem cells from bone marrow and adipose tissue under xeno-free conditions for cell therapy

              Introduction Mesenchymal stem cells (MSCs) are promising candidates for cell-based therapies. Human platelet lysate represents an efficient alternative to fetal bovine serum for clinical-scale expansion of MSCs. Different media used in culture processes should maintain the biological characteristics of MSCs during multiple passages. However, bone marrow-derived MSCs and adipose tissue-derived MSCs have not yet been directly compared with each other under human platelet lysate conditions. This study aims to conduct a direct head-to-head comparison of the biological characteristics of the two types of MSCs under human platelet lysate-supplemented culture conditions for their ability to be used in regenerative medicine applications. Methods The bone marrow- and adipose tissue-derived MSCs were cultured under human platelet lysate conditions and their biological characteristics evaluated for cell therapy (morphology, immunophenotype, colony-forming unit-fibroblast efficiency, proliferation capacity, potential for mesodermal differentiation, secreted proteins, and immunomodulatory effects). Results Under human platelet lysate-supplemented culture conditions, bone marrow- and adipose tissue-derived MSCs exhibited similar fibroblast-like morphology and expression patterns of surface markers. Adipose tissue-derived MSCs had greater proliferative potential than bone marrow-derived MSCs, while no significantly difference in colony efficiency were observed between the two types of cells. However, bone marrow-derived MSCs possessed higher capacity toward osteogenic and chondrogenic differentiation compared with adipose tissue-derived MSCs, while similar adipogenic differentiation potential wase observed between the two types of cells. There were some differences between bone marrow- and adipose tissue-derived MSCs for several secreted proteins, such as cytokine (interferon-γ), growth factors (basic fibroblast growth factor, hepatocyte growth factor, and insulin-like growth factor-1), and chemokine (stem cell-derived factor-1). Adipose tissue-derived MSCs had more potent immunomodulatory effects than bone marrow-derived MSCs. Conclusions Adipose tissue-derived MSCs have biological advantages in the proliferative capacity, secreted proteins (basic fibroblast growth factor, interferon-γ, and insulin-like growth factor-1), and immunomodulatory effects, but bone marrow-derived MSCs have advantages in osteogenic and chondrogenic differentiation potential and secreted proteins (stem cell-derived factor-1 and hepatocyte growth factor); these biological advantages should be considered systematically when choosing the MSC source for specific clinical application.
                Bookmark

                Author and article information

                Journal
                Biomolecules
                Biomolecules
                biomolecules
                Biomolecules
                MDPI
                2218-273X
                01 December 2019
                December 2019
                : 9
                : 12
                : 811
                Affiliations
                [1 ]Clinical Research Center for Precision and Regenerative Medicine, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; ilyashul@ 123456mail.ru (I.S.); sergogurtsov@ 123456rambler.ru (S.O.); maldito.goldpride@ 123456gmail.com (A.K.); lenahamzina@ 123456yandex.ru (E.Z.); elyaelya18@ 123456gmail.com (E.A.); alex_rogozhin@ 123456mail.ru (A.R.); galina2526@ 123456gmail.com (G.M.); masgut@ 123456gmail.com (R.M.); igor.lavrov@ 123456gmail.com (I.L.); rizvanov@ 123456gmail.com (A.R.)
                [2 ]Department of Histology, Cytology, and Embryology, Kazan State Medical University, 420012 Kazan, Russia
                [3 ]Republic Clinical Hospital, 420138 Kazan, Russia
                [4 ]Department of Neurology, Kazan State Medical Academy–Branch Campus of the Federal State Budgetary Edicational Institution of Father Professional Education «Russian Medical Academy of Continuous Professional Education», 420012 Kazan, Russia
                [5 ]Division of Biomedical Science, School of Veterinary Medicine and Science, Faculty of Medicine and Health Sciences, University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK; Victoria.James@ 123456nottingham.ac.uk
                [6 ]Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA
                [7 ]Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
                Author notes
                [* ]Correspondence: yana.k-z-n@ 123456mail.ru ; Tel.: +7-9274307511
                Author information
                https://orcid.org/0000-0002-9435-340X
                https://orcid.org/0000-0002-9926-2953
                https://orcid.org/0000-0002-9427-5739
                Article
                biomolecules-09-00811
                10.3390/biom9120811
                6995633
                31805639
                b5fca0f7-a93d-4da3-bf6e-77b7c25ac689
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 30 September 2019
                : 26 November 2019
                Categories
                Article

                spinal cord injury,mesenchymal stem cells,adipose tissue,bone marrow,dental pulp,fibrin matrix,rat,pig

                Comments

                Comment on this article