2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Bumblebees display characteristics of active vision during robust obstacle avoidance flight

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          Insects are remarkable flyers and capable of navigating through highly cluttered environments. We tracked the head and thorax of bumblebees freely flying in a tunnel containing vertically oriented obstacles to uncover the sensorimotor strategies used for obstacle detection and collision avoidance. Bumblebees presented all the characteristics of active vision during flight by stabilizing their head relative to the external environment and maintained close alignment between their gaze and flightpath. Head stabilization increased motion contrast of nearby features against the background to enable obstacle detection. As bees approached obstacles, they appeared to modulate avoidance responses based on the relative retinal expansion velocity (RREV) of obstacles and their maximum evasion acceleration was linearly related to RREVmax. Finally, bees prevented collisions through rapid roll manoeuvres implemented by their thorax. Overall, the combination of visuo-motor strategies of bumblebees highlights elegant solutions developed by insects for visually guided flight through cluttered environments.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: found
          • Article: not found

          Software techniques for two- and three-dimensional kinematic measurements of biological and biomimetic systems.

          Researchers studying aspects of locomotion or movement in biological and biomimetic systems commonly use video or stereo video recordings to quantify the behaviour of the system in question, often with an emphasis on measures of position, velocity and acceleration. However, despite the apparent simplicity of video analysis, it can require substantial investment of time and effort, even when performed with adequate software tools. This paper reviews the underlying principles of video and stereo video analysis as well as its automation and is accompanied by fully functional and freely available software implementation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Bumblebee flight distances in relation to the forage landscape.

            1. Foraging range is a key aspect of the ecology of 'central place foragers'. Estimating how far bees fly under different circumstances is essential for predicting colony success, and for estimating bee-mediated gene flow between plant populations. It is likely to be strongly influenced by forage distribution, something that is hard to quantify in all but the simplest landscapes; and theories of foraging distance tend to assume a homogeneous forage distribution. 2. We quantified the distribution of bumblebee Bombus terrestris L. foragers away from experimentally positioned colonies, in an agricultural landscape, using two methods. We mass-marked foragers as they left the colony, and analysed pollen from foragers returning to the colonies. The data were set within the context of the 'forage landscape': a map of the spatial distribution of forage as determined from remote-sensed data. To our knowledge, this is the first time that empirical data on foraging distances and forage availability, at this resolution and scale, have been collected and combined for bumblebees. 3. The bees foraged at least 1.5 km from their colonies, and the proportion of foragers flying to one field declined, approximately linearly, with radial distance. In this landscape there was great variation in forage availability within 500 m of colonies but little variation beyond 1 km, regardless of colony location. 4. The scale of B. terrestris foraging was large enough to buffer against effects of forage patch and flowering crop heterogeneity, but bee species with shorter foraging ranges may experience highly variable colony success according to location.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Flies evade looming targets by executing rapid visually directed banked turns.

              Avoiding predators is an essential behavior in which animals must quickly transform sensory cues into evasive actions. Sensory reflexes are particularly fast in flying insects such as flies, but the means by which they evade aerial predators is not known. Using high-speed videography and automated tracking of flies in combination with aerodynamic measurements on flapping robots, we show that flying flies react to looming stimuli with directed banked turns. The maneuver consists of a rapid body rotation followed immediately by an active counter-rotation and is enacted by remarkably subtle changes in wing motion. These evasive maneuvers of flies are substantially faster than steering maneuvers measured previously and indicate the existence of sensory-motor circuitry that can reorient the fly's flight path within a few wingbeats.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Journal of Experimental Biology
                The Company of Biologists
                0022-0949
                1477-9145
                February 15 2022
                February 15 2022
                February 18 2022
                : 225
                : 4
                Article
                10.1242/jeb.243021
                35067721
                b6091bbc-8b3a-4d08-bd86-a96a599e1aa7
                © 2022

                http://creativecommons.org/licenses/by/4.0

                History

                Comments

                Comment on this article