11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Systems biology-guided understanding of white-rot fungi for biotechnological applications: A review

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Summary

          Plant-derived biomass is the most abundant biogenic carbon source on Earth. Despite this, only a small clade of organisms known as white-rot fungi (WRF) can efficiently break down both the polysaccharide and lignin components of plant cell walls. This unique ability imparts a key role for WRF in global carbon cycling and highlights their potential utilization in diverse biotechnological applications. To date, research on WRF has primarily focused on their extracellular ‘digestive enzymes’ whereas knowledge of their intracellular metabolism remains underexplored. Systems biology is a powerful approach to elucidate biological processes in numerous organisms, including WRF. Thus, here we review systems biology methods applied to WRF to date, highlight observations related to their intracellular metabolism, and conduct comparative extracellular proteomic analyses to establish further correlations between WRF species, enzymes, and cultivation conditions. Lastly, we discuss biotechnological opportunities of WRF as well as challenges and future research directions.

          Graphical abstract

          Abstract

          Mycology; Biotechnology

          Related collections

          Most cited references153

          • Record: found
          • Abstract: found
          • Article: not found

          Marine pollution. Plastic waste inputs from land into the ocean.

          Plastic debris in the marine environment is widely documented, but the quantity of plastic entering the ocean from waste generated on land is unknown. By linking worldwide data on solid waste, population density, and economic status, we estimated the mass of land-based plastic waste entering the ocean. We calculate that 275 million metric tons (MT) of plastic waste was generated in 192 coastal countries in 2010, with 4.8 to 12.7 million MT entering the ocean. Population size and the quality of waste management systems largely determine which countries contribute the greatest mass of uncaptured waste available to become plastic marine debris. Without waste management infrastructure improvements, the cumulative quantity of plastic waste available to enter the ocean from land is predicted to increase by an order of magnitude by 2025.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Features of promising technologies for pretreatment of lignocellulosic biomass.

            N. Mosier (2005)
            Cellulosic plant material represents an as-of-yet untapped source of fermentable sugars for significant industrial use. Many physio-chemical structural and compositional factors hinder the enzymatic digestibility of cellulose present in lignocellulosic biomass. The goal of any pretreatment technology is to alter or remove structural and compositional impediments to hydrolysis in order to improve the rate of enzyme hydrolysis and increase yields of fermentable sugars from cellulose or hemicellulose. These methods cause physical and/or chemical changes in the plant biomass in order to achieve this result. Experimental investigation of physical changes and chemical reactions that occur during pretreatment is required for the development of effective and mechanistic models that can be used for the rational design of pretreatment processes. Furthermore, pretreatment processing conditions must be tailored to the specific chemical and structural composition of the various, and variable, sources of lignocellulosic biomass. This paper reviews process parameters and their fundamental modes of action for promising pretreatment methods.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The biomass distribution on Earth

              Significance The composition of the biosphere is a fundamental question in biology, yet a global quantitative account of the biomass of each taxon is still lacking. We assemble a census of the biomass of all kingdoms of life. This analysis provides a holistic view of the composition of the biosphere and allows us to observe broad patterns over taxonomic categories, geographic locations, and trophic modes.
                Bookmark

                Author and article information

                Contributors
                Journal
                iScience
                iScience
                iScience
                Elsevier
                2589-0042
                18 June 2022
                15 July 2022
                18 June 2022
                : 25
                : 7
                : 104640
                Affiliations
                [1 ]Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
                [2 ]Advanced Energy Systems Graduate Program, Colorado School of Mines, Golden, CO 80401, USA
                Author notes
                []Corresponding author davinia.salvachua@ 123456nrel.gov
                [3]

                These authors contributed equally

                Article
                S2589-0042(22)00912-9 104640
                10.1016/j.isci.2022.104640
                9272384
                35832889
                b6355d90-9ab1-4586-9d97-1840615de02b
                © 2022 The Author(s)

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                Categories
                Review

                mycology,biotechnology
                mycology, biotechnology

                Comments

                Comment on this article