1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      No-reflow phenomenon following stroke recanalization therapy: Clinical assessment advances: A narrative review

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The no-reflow phenomenon (NRP) after successful vascular recanalization in acute ischemic stroke (AIS) has become a major cause of poor clinical prognosis and ineffective recanalization. However, there is currently no clear definition or unified clinical assessment method for the NRP. Therefore, it is urgent to clarify the clinical evaluation criteria for the NRP and develop new no-reflow evaluation techniques so that remedial treatment can be applied to AIS patients suffering from the NRP. In this brief review, a variety of NRP assessment methods and defining criteria for clinical practice are presented.

          Related collections

          Most cited references58

          • Record: found
          • Abstract: found
          • Article: not found

          Guidelines for the Early Management of Patients With Acute Ischemic Stroke: 2019 Update to the 2018 Guidelines for the Early Management of Acute Ischemic Stroke: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association

          Background and Purpose- The purpose of these guidelines is to provide an up-to-date comprehensive set of recommendations in a single document for clinicians caring for adult patients with acute arterial ischemic stroke. The intended audiences are prehospital care providers, physicians, allied health professionals, and hospital administrators. These guidelines supersede the 2013 Acute Ischemic Stroke (AIS) Guidelines and are an update of the 2018 AIS Guidelines. Methods- Members of the writing group were appointed by the American Heart Association (AHA) Stroke Council's Scientific Statements Oversight Committee, representing various areas of medical expertise. Members were not allowed to participate in discussions or to vote on topics relevant to their relations with industry. An update of the 2013 AIS Guidelines was originally published in January 2018. This guideline was approved by the AHA Science Advisory and Coordinating Committee and the AHA Executive Committee. In April 2018, a revision to these guidelines, deleting some recommendations, was published online by the AHA. The writing group was asked review the original document and revise if appropriate. In June 2018, the writing group submitted a document with minor changes and with inclusion of important newly published randomized controlled trials with >100 participants and clinical outcomes at least 90 days after AIS. The document was sent to 14 peer reviewers. The writing group evaluated the peer reviewers' comments and revised when appropriate. The current final document was approved by all members of the writing group except when relationships with industry precluded members from voting and by the governing bodies of the AHA. These guidelines use the American College of Cardiology/AHA 2015 Class of Recommendations and Level of Evidence and the new AHA guidelines format. Results- These guidelines detail prehospital care, urgent and emergency evaluation and treatment with intravenous and intra-arterial therapies, and in-hospital management, including secondary prevention measures that are appropriately instituted within the first 2 weeks. The guidelines support the overarching concept of stroke systems of care in both the prehospital and hospital settings. Conclusions- These guidelines provide general recommendations based on the currently available evidence to guide clinicians caring for adult patients with acute arterial ischemic stroke. In many instances, however, only limited data exist demonstrating the urgent need for continued research on treatment of acute ischemic stroke.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found

            Arterial Spin Labeling Perfusion of the Brain: Emerging Clinical Applications

            Arterial spin labeling (ASL) is a magnetic resonance (MR) imaging technique used to assess cerebral blood flow noninvasively by magnetically labeling inflowing blood. In this article, the main labeling techniques, notably pulsed and pseudocontinuous ASL, as well as emerging clinical applications will be reviewed. In dementia, the pattern of hypoperfusion on ASL images closely matches the established patterns of hypometabolism on fluorine 18 fluorodeoxyglucose (FDG) positron emission tomography (PET) images due to the close coupling of perfusion and metabolism in the brain. This suggests that ASL might be considered as an alternative for FDG, reserving PET to be used for the molecular disease-specific amyloid and tau tracers. In stroke, ASL can be used to assess perfusion alterations both in the acute and the chronic phase. In arteriovenous malformations and dural arteriovenous fistulas, ASL is very sensitive to detect even small degrees of shunting. In epilepsy, ASL can be used to assess the epileptogenic focus, both in peri- and interictal period. In neoplasms, ASL is of particular interest in cases in which gadolinium-based perfusion is contraindicated (eg, allergy, renal impairment) and holds promise in differentiating tumor progression from benign causes of enhancement. Finally, various neurologic and psychiatric diseases including mild traumatic brain injury or posttraumatic stress disorder display alterations on ASL images in the absence of visualized structural changes. In the final part, current limitations and future developments of ASL techniques to improve clinical applicability, such as multiple inversion time ASL sequences to assess alterations of transit time, reproducibility and quantification of cerebral blood flow, and to measure cerebrovascular reserve, will be reviewed. (©) RSNA, 2016 Online supplemental material is available for this article.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Pericyte contraction induced by oxidative-nitrative stress impairs capillary reflow despite successful opening of an occluded cerebral artery.

              Here we show that ischemia induces sustained contraction of pericytes on microvessels in the intact mouse brain. Pericytes remain contracted despite successful reopening of the middle cerebral artery after 2 h of ischemia. Pericyte contraction causes capillary constriction and obstructs erythrocyte flow. Suppression of oxidative-nitrative stress relieves pericyte contraction, reduces erythrocyte entrapment and restores microvascular patency; hence, tissue survival improves. In contrast, peroxynitrite application causes pericyte contraction. We also show that the microvessel wall is the major source of oxygen and nitrogen radicals causing ischemia and reperfusion-induced microvascular dysfunction. These findings point to a major but previously not recognized pathophysiological mechanism; ischemia and reperfusion-induced injury to pericytes may impair microcirculatory reflow and negatively affect survival by limiting substrate and drug delivery to tissue already under metabolic stress, despite recanalization of an occluded artery. Agents that can restore pericyte dysfunction and microvascular patency may increase the success of thrombolytic and neuroprotective treatments.
                Bookmark

                Author and article information

                Journal
                Brain Circ
                Brain Circ
                BC
                Brain Circ
                Brain Circulation
                Wolters Kluwer - Medknow (India )
                2394-8108
                2455-4626
                Oct-Dec 2023
                30 November 2023
                : 9
                : 4
                : 214-221
                Affiliations
                [1 ] Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
                [2 ] Department of Emergency, Xuanwu Hospital, Capital Medical University, Beijing, China
                [3 ] Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
                [4 ] Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
                [5 ] Department of Neurosurgery, Wayne State University School of Medicine, Detroit, Michigan, USA
                [6 ] Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
                Author notes
                Address for Correspondence: Dr. Xunming Ji, Department of Neurosurgery, Xuanwu Hospital, Capital Medicine University, No. 45, Changchun Street, Beijing 100053, China. E-mail: jixm@ 123456ccmu.edu.cn Dr. Wenbo Zhao, Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Beijing 100053, China. E-mail: zhaowb@ 123456xwh.ccmu.edu.cnn
                Article
                BC-9-214
                10.4103/bc.bc_37_23
                10821681
                38284109
                b6450ae1-934c-4f80-b3ea-d3db03e1d3a4
                Copyright: © 2023 Brain Circulation

                This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

                History
                : 07 May 2023
                : 13 July 2023
                : 19 July 2023
                Categories
                Review Article

                angiography,arterial spin labelling,no-reflow phenomenon,perfusion imaging,transcranial doppler

                Comments

                Comment on this article