31
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      CMIP is oncogenic in human gastric cancer cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Gastric cancer is one of the most common cancers and the second leading cause of cancer-associated mortality worldwide. Recurrence, metastasis and resistance to drug treatment are the main barrier to survival of patients with advanced stage gastric cancer. Further study of the molecular mechanisms involved will improve the therapeutic options for gastric cancer. In a previous study, c-Maf was discovered as an oncogene transduced in the avian AS42 retrovirus, and was found to be overexpressed in multiple myeloma and angioimmunoblastic T-cell lymphoma. c-Maf inducing protein (CMIP) is involved in the c-Maf signaling pathway, which was reported to serve an important role in human minimal change nephrotic syndrome and in human reading and language related behavior. However, the relationship between CMIP and human gastric cancer has not yet been reported. In the present study, CMIP protein levels in gastric cancer tissues and cells were measured using immunohistochemistry and western blot analysis; the expression of CMIP protein was significantly higher in gastric cancer tissues compared with normal gastric tissues. Expression was positively associated with poorer clinical parameters, relapse-free survival and overall survival. Furthermore, using cell counting, Cell Counting Kit-8, colony formation, wound healing and Transwell assays, together with flow cytometry, CMIP depletion by RNA interference was observed to reduce the capacity of gastric cancer cells to proliferate and migrate in vitro. Furthermore, the upstream and downstream genes of CMIP were analyzed by luciferase reporter assay and reverse transcription quantitative polymerase chain reaction, which indicated that CMIP was a direct target of miR-101-3p. In addition, CMIP knockdown was observed to result in the downregulation of MDM2 and mitogen activated protein kinase (MAPK) expression at the mRNA level. In conclusion, CMIP demonstrated an oncogenic role in human gastric cancer cells. Furthermore, microRNA-101-3p, MDM2 and MAPK were involved in the CMIP signaling pathway in gastric cancer. CMIP could be a novel target for further investigation in the clinical therapeutic management of gastric cancer.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Overexpression of c-maf is a frequent oncogenic event in multiple myeloma that promotes proliferation and pathological interactions with bone marrow stroma.

          The oncogene c-maf is translocated in approximately 5%-10% of multiple myelomas. Unexpectedly, we observed c-maf expression in myeloma cell lines lacking c-maf translocations and in 50% of multiple myeloma bone marrow samples. By gene expression profiling, we identified three c-maf target genes: cyclin D2, integrin beta7, and CCR1. c-maf transactivated the cyclin D2 promoter and enhanced myeloma proliferation, whereas dominant inhibition of c-maf blocked tumor formation in immunodeficient mice. c-maf-driven expression of integrin beta7 enhanced myeloma adhesion to bone marrow stroma and increased production of VEGF. We propose that c-maf transforms plasma cells by stimulating cell cycle progression and by altering bone marrow stromal interactions. The frequent overexpression of c-maf in myeloma makes it an attractive target for therapeutic intervention.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            CMIP and ATP2C2 Modulate Phonological Short-Term Memory in Language Impairment

            Specific language impairment (SLI) is a common developmental disorder characterized by difficulties in language acquisition despite otherwise normal development and in the absence of any obvious explanatory factors. We performed a high-density screen of SLI1, a region of chromosome 16q that shows highly significant and consistent linkage to nonword repetition, a measure of phonological short-term memory that is commonly impaired in SLI. Using two independent language-impaired samples, one family-based (211 families) and another selected from a population cohort on the basis of extreme language measures (490 cases), we detected association to two genes in the SLI1 region: that encoding c-maf-inducing protein (CMIP, minP = 5.5 × 10−7 at rs6564903) and that encoding calcium-transporting ATPase, type2C, member2 (ATP2C2, minP = 2.0 × 10−5 at rs11860694). Regression modeling indicated that each of these loci exerts an independent effect upon nonword repetition ability. Despite the consistent findings in language-impaired samples, investigation in a large unselected cohort (n = 3612) did not detect association. We therefore propose that variants in CMIP and ATP2C2 act to modulate phonological short-term memory primarily in the context of language impairment. As such, this investigation supports the hypothesis that some causes of language impairment are distinct from factors that influence normal language variation. This work therefore implicates CMIP and ATP2C2 in the etiology of SLI and provides molecular evidence for the importance of phonological short-term memory in language acquisition.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              DCDC2, KIAA0319 and CMIP Are Associated with Reading-Related Traits

              Background Several susceptibility genes have been proposed for dyslexia (reading disability; RD) and specific language impairment (SLI). RD and SLI show comorbidity, but it is unclear whether a common genetic component is shared. Methods We have investigated whether candidate genes for RD and SLI affect specific cognitive traits or have broad effect on cognition. We have analyzed common risk variants within RD (MRPL19/C2ORF3, KIAA0319, and DCDC2) and language impairment (CMIP and ATP2C2) candidate loci in the Avon Longitudinal Study of Parents and Children cohort (n = 3725), representing children born in southwest England in the early 1990s. Results We detected associations between reading skills and KIAA0319, DCDC2, and CMIP. We show that DCDC2 is specifically associated with RD, whereas variants in CMIP and KIAA0319 are associated with reading skills across the ability range. The strongest associations were restricted to single-word reading and spelling measures, suggesting that these genes do not extend their effect to other reading and language-related skills. Inclusion of individuals with comorbidity tends to strengthen these associations. Our data do not support MRPL19/C2ORF3 as a locus involved in reading abilities nor CMIP/ATP2C2 as genes regulating language skills. Conclusions We provide further support for the role of KIAA0319 and DCDC2 in contributing to reading abilities and novel evidence that the language-disorder candidate gene CMIP is also implicated in reading processes. Additionally, we present novel data to evaluate the prevalence and comorbidity of RD and SLI, and we recommend not excluding individuals with comorbid RD and SLI when designing genetic association studies for RD.
                Bookmark

                Author and article information

                Journal
                Mol Med Rep
                Mol Med Rep
                Molecular Medicine Reports
                D.A. Spandidos
                1791-2997
                1791-3004
                November 2017
                20 September 2017
                20 September 2017
                : 16
                : 5
                : 7277-7286
                Affiliations
                [1 ]Department of Emergency Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
                [2 ]Department of Pathology, The Second People's Hospital of Hefei, Hefei, Anhui 230011, P.R. China
                [3 ]Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
                Author notes
                Correspondence to: Dr Yeben Qian, Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, 218 JiXi Road, Hefei, Anhui 230022, P.R. China, E-mail: qianyeben@ 123456hotmail.com
                Article
                mmr-16-05-7277
                10.3892/mmr.2017.7541
                5865856
                28944848
                b659c6b5-2e14-4601-82e8-b26a30114244
                Copyright: © Zhang et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

                History
                : 15 November 2016
                : 17 July 2017
                Categories
                Articles

                c-maf inducing protein,oncogene,proliferation,metastasis,gastric cancer

                Comments

                Comment on this article