16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Light pollution offshore: zenithal sky glow measurements in the Mediterranean coastal waters

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Light pollution is a worldwide phenomenon whose consequences for the natural environment and the human health are being intensively studied nowadays. Most published studies address issues related with light pollution inland. Coastal waters, however, are spaces of high environmental interest, due to their biodiversity richness and their economical significance. The elevated population density in coastal regions is accompanied by correspondingly large emissions of artificial light at night, whose role as an environmental stressor is increasingly being recognized. Characterizing the light pollution levels in coastal waters is a necessary step for protecting these areas. At the same time, the marine surface environment provides a stage free from obstacles for measuring the dependence of the skyglow on the distance to the light polluting sources, and validating (or rejecting) atmospheric light propagation models. We present a proof-of-concept of a gimbal measurement system that can be used for zenithal skyglow measurements on board of small boats and large vessels under actual navigation conditions. We report the results obtained in the summer of 2016 along two routes in the Mediterranean waters offshore Barcelona, travelling 9 and 31.7 km into the sea. The first route was carried out under atmospheric conditions comparable to the ones used by recently published models of anthropogenic sky brightness, and its results are highly compatible with the theoretical predictions. The results obtained in the second route, conducted under a clearer atmosphere, showed systematic differences that can be traced back to two expected phenomena, consequence of the smaller aerosol content: the reduction of the anthropogenic sky glow at short distances from the sources, and the slower rate of brightness decay with distance, which gives rise to an excess of brightness at large distances from the coastline.

          Related collections

          Most cited references19

          • Record: found
          • Abstract: found
          • Article: not found

          The ecological impacts of nighttime light pollution: a mechanistic appraisal.

          The ecological impacts of nighttime light pollution have been a longstanding source of concern, accentuated by realized and projected growth in electrical lighting. As human communities and lighting technologies develop, artificial light increasingly modifies natural light regimes by encroaching on dark refuges in space, in time, and across wavelengths. A wide variety of ecological implications of artificial light have been identified. However, the primary research to date is largely focused on the disruptive influence of nighttime light on higher vertebrates, and while comprehensive reviews have been compiled along taxonomic lines and within specific research domains, the subject is in need of synthesis within a common mechanistic framework. Here we propose such a framework that focuses on the cross-factoring of the ways in which artificial lighting alters natural light regimes (spatially, temporally, and spectrally), and the ways in which light influences biological systems, particularly the distinction between light as a resource and light as an information source. We review the evidence for each of the combinations of this cross-factoring. As artificial lighting alters natural patterns of light in space, time and across wavelengths, natural patterns of resource use and information flows may be disrupted, with downstream effects to the structure and function of ecosystems. This review highlights: (i) the potential influence of nighttime lighting at all levels of biological organisation (from cell to ecosystem); (ii) the significant impact that even low levels of nighttime light pollution can have; and (iii) the existence of major research gaps, particularly in terms of the impacts of light at population and ecosystem levels, identification of intensity thresholds, and the spatial extent of impacts in the vicinity of artificial lights. © 2013 The Authors. Biological Reviews © 2013 Cambridge Philosophical Society.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The dark side of light at night: physiological, epidemiological, and ecological consequences.

            Organisms must adapt to the temporal characteristics of their surroundings to successfully survive and reproduce. Variation in the daily light cycle, for example, acts through endocrine and neurobiological mechanisms to control several downstream physiological and behavioral processes. Interruptions in normal circadian light cycles and the resulting disruption of normal melatonin rhythms cause widespread disruptive effects involving multiple body systems, the results of which can have serious medical consequences for individuals, as well as large-scale ecological implications for populations. With the invention of electrical lights about a century ago, the temporal organization of the environment has been drastically altered for many species, including humans. In addition to the incidental exposure to light at night through light pollution, humans also engage in increasing amounts of shift-work, resulting in repeated and often long-term circadian disruption. The increasing prevalence of exposure to light at night has significant social, ecological, behavioral, and health consequences that are only now becoming apparent. This review addresses the complicated web of potential behavioral and physiological consequences resulting from exposure to light at night, as well as the large-scale medical and ecological implications that may result.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Human alteration of natural light cycles: causes and ecological consequences

              Artificial light at night is profoundly altering natural light cycles, particularly as perceived by many organisms, over extensive areas of the globe. This alteration comprises the introduction of light at night at places and times at which it has not previously occurred, and with different spectral signatures. Given the long geological periods for which light cycles have previously been consistent, this constitutes a novel environmental pressure, and one for which there is evidence for biological effects that span from molecular to community level. Here we provide a synthesis of understanding of the form and extent of this alteration, some of the key consequences for terrestrial and aquatic ecosystems, interactions and synergies with other anthropogenic pressures on the environment, major uncertainties, and future prospects and management options. This constitutes a compelling example of the need for a thoroughly interdisciplinary approach to understanding and managing the impact of one particular anthropogenic pressure. The former requires insights that span molecular biology to ecosystem ecology, and the latter contributions of biologists, policy makers and engineers.
                Bookmark

                Author and article information

                Journal
                2017-05-06
                Article
                1705.02508
                b67b0701-dc48-45df-82ff-cabf180e9f8d

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                astro-ph.IM physics.ao-ph

                Atmospheric, Oceanic and Environmental physics,Instrumentation & Methods for astrophysics

                Comments

                Comment on this article