42
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      New and novel intrinsic host repressive factors against HIV-1: PAF1 complex, HERC5 and others

      research-article
      1 , 1 ,
      Retrovirology
      BioMed Central
      Host restriction factors, HIV, Interferon, Therapy

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Human Immunodeficiency Virus (HIV), a retrovirus, is the etiological agent of acquired immunodeficiency syndrome (AIDS). AIDS is characterized by the failure of the immune system to protect against not only HIV but also common secondary viral and bacterial infections. Viruses such as HIV-1 are intracellular pathogens that require host cell machinery to maintain and generate new progeny. In that process, viruses disturb the normal components of intrinsic immune responses within infected cells. After HIV infection, the expression of various cellular restriction factors is notably up-regulated due to interferon activation, partly because genes for most of these restriction factors such as APOBEC3, TRIM, BST2/Tetherin, contain interferon-responsive promoters. Importantly, these molecules have been focused on for both elite controllers as well as long-term non-progressor AIDS patients. The best characterized HIV restriction factors are encoded by the APOBEC3 and TRIM gene families. The interplay between these cellular and viral proteins appears to be an important factor in deciding the ultimate disease outcome. Interestingly, HIV has also armed itself to counter various cellular intrinsic defense mechanisms, thereby overcoming the intrinsic responses mounted by the host. Therefore, today there is an intense effort in the HIV/AIDS field to define both important host-encoded antiviral restriction factors and viral counter-defense mechanisms that play key roles in the pathogenesis. Along these lines, the list of both restriction factors (proteins that counter specific viral proteins) and repressive factors (inhibitors of HIV life cycle) has been growing continuously. These factors not only include APOBECs, TRIM5α, p21/waf1, and SAMHD1, which act on the incoming virus [1], but also TRIM22, TRIM28/KAP1, and BST2/Tetherin, which exert their effect on post integration, assembly and budding. In a recent manuscript by Liu et al., the authors utilized an siRNA screening method to knockdown expression of 19,121 human genes [2]. They specifically looked for knockdown of restriction factors that would rescue the early stages of HIV replication from post entry to integration. The assay utilized viral pseudotypes HIV89.6R and HIV8.2N which are capable of a single round of infection. To optimize the screening, they used negative control siRNAs targeting cyclophilin B, PLK1 and GFP in target HeLa-CD4 cells. They identified 114 genes that affected a wide range of cellular activities that could be classified as genes that defend against retroviral invasion. These factors fall into various functional categories such as receptor signaling, vesicle trafficking, transcription, mRNA processing, DNA/RNA surveillance, cross-nuclear membrane transport and ubiquitination. Interestingly, they did not observe the presence of the classical RNA-recognizing PRRs such as toll like receptors TLR3, 7 or 8 or RIG-1 like receptors or MDA-5 in their screening. Genes such as AP2M1, DNM2, SETDB1, PAF1, CTR9 and RTF1 were identified and further characterized. Some of the gene products were previously shown to be involved in the regulation of endocytosis (AP2M1 and DNM2), HIV pre-integration complex transportation from cytoplasm to nucleus (NPIP, an interacting partner of nuclear pore components such as NUP62), PAF 1 complex and protein methylase (SETDB1). Their detailed investigation demonstrated the role of PAF1 complex as an important repressive factor during intrinsic defense against HIV infection. Specifically, the PAF1 complex appears to block HIV replication during the early events from post entry to integration of proviral DNA into host genome. Intriguingly, they found that PAF1 complex is present ubiquitously in various cell lineages, which are common targets of HIV that include monocytes, macrophages and T lymphocytes. Moreover, PAF1 complex not only effectively represses HIV infection but also inhibits infection of evolutionarily similar retroviruses such as HIV-2 and SIV. SETDB1, another interesting protein identified, harbors enzymatic activity as lysine methyltransferase. The SETDB1 possesses specificity for lysine 9 of histone H3 and plays an important role in silencing transcription by depositing specific histone marks, namely H3K9me2-3 during cell differentiation [3,4]. Additionally, SETDB1 has been shown to induce Tat methylation, which results in reduced viral production [5], and on the other hand methyl transferase inhibitors (similar to siRNA used here) lead to the enhancement of virus production [6]. The finding of SETDB1 in the screen of Li et al. further establishes the role of TRIM28 during proviral integration, which it primarily executes by recruiting SETDB1 to the pre-integration complex [7]. It will be interesting to determine how this enzyme regulates the activity of other viral pre-integration proteins such as RT, Gag or IN on specific lysine residues, which could acquire both acetylating and methylation marks. In another article by Woods at al., the authors confirmed the role of HECT domain and RCC1-like domain-containing protein 5 (HERC5), an interferon inducible gene that restricts the early stages of HIV assembly [8]. Cells expressing HERC5 released 4.0-fold less infectious virus than the control cells after a single round of replication. Furthermore using published databases, the authors found that HERC5 expression is significantly increased in patients in acute and chronic stages of infection but not in non-progressors. Collectively, the data are consistent with previous reports [9-11], where HERC5 restriction is different from the well established anti-HIV-1 activities of ISG15-only expression. Thus, these studies add a few more candidates to the ever growing list of HIV repressive and restriction factors that inhibit HIV life cycle at various stages (Figure 1). Taken together, these investigations are novel and open the door for a better understanding of how host cellular factors control infection. Future confirmatory experiments using primary infections of T-cells vs. macrophages and field isolate of the virus to elucidate viral targets for each of these important factors and to elicit possible escape mutants to their restriction will shed more light on this fascinating area of research. Figure 1 Two new host repressive factors which inhibit HIV life cycle at different steps. PAF1 complex seems to inhibit early events of viral life cycle from reverse transcription to integration step. On the other hand HERC5 appears to act at the later part of viral life cycle, that is during the earlier stage of new viral particle assembly, most probably by regulating the ISGylation of Gag protein of HIV.

          Related collections

          Most cited references7

          • Record: found
          • Abstract: found
          • Article: not found

          The interferon-induced gene ISG15 blocks retrovirus release from cells late in the budding process.

          The release of retroviruses from cells requires ubiquitination of Gag and recruitment of cellular proteins involved in endosome sorting, including the ESCRT-III proteins and the Vps4 ATPase. In response to infection, cells have evolved an interferon-induced mechanism to block virus replication through expression of the interferon-stimulated gene 15 (ISG15), a dimer homologue of ubiquitin, which interferes with ubiquitin pathways in cells. Previously, it has been reported that ISG15 expression inhibited the E3 ubiquitin ligase, Nedd4, and prevented association of the ESCRT-I protein Tsg101 with human immunodeficiency virus type 1 (HIV-1) Gag. The budding of avian sarcoma leukosis virus and HIV-1 Gag virus-like particles containing L-domain mutations can be rescued by fusion to ESCRT proteins, which cause entry into the budding pathway beyond these early steps. The release of these fusions from cells was susceptible to inhibition by ISG15, indicating that there was a block late in the budding process. We now demonstrate that the Vps4 protein does not associate with the avian sarcoma leukosis virus or the HIV-1 budding complexes when ISG15 is expressed. This is caused by a loss in interaction between Vps4 with its coactivator protein LIP5 needed to promote the formation of the ESCRT-III-Vps4 double-hexamer complex required for membrane scission and virus release. The inability of LIP5 to interact with Vps4 is the probable result of ISG15 conjugation to the ESCRT-III protein, CHMP5, which regulates the availability of LIP5. Thus, there appear to be multiple levels of ISG15-induced inhibition acting at different stages of the virus release process.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The TRIM family protein KAP1 inhibits HIV-1 integration.

            The integration of viral cDNA into the host genome is a critical step in the life cycle of HIV-1. This step is catalyzed by integrase (IN), a viral enzyme that is positively regulated by acetylation via the cellular histone acetyl transferase (HAT) p300. To investigate the relevance of IN acetylation, we searched for cellular proteins that selectively bind acetylated IN and identified KAP1, a protein belonging to the TRIM family of antiviral proteins. KAP1 binds acetylated IN and induces its deacetylation through the formation of a protein complex which includes the deacetylase HDAC1. Modulation of intracellular KAP1 levels in different cell types including T cells, the primary HIV-1 target, revealed that KAP1 curtails viral infectivity by selectively affecting HIV-1 integration. This study identifies KAP1 as a cellular factor restricting HIV-1 infection and underscores the relevance of IN acetylation as a crucial step in the viral infectious cycle. Copyright © 2011 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Early steps of retrovirus replicative cycle

              During the last two decades, the profusion of HIV research due to the urge to identify new therapeutic targets has led to a wealth of information on the retroviral replication cycle. However, while the late stages of the retrovirus life cycle, consisting of virus replication and egress, have been partly unraveled, the early steps remain largely enigmatic. These early steps consist of a long and perilous journey from the cell surface to the nucleus where the proviral DNA integrates into the host genome. Retroviral particles must bind specifically to their target cells, cross the plasma membrane, reverse-transcribe their RNA genome, while uncoating the cores, find their way to the nuclear membrane and penetrate into the nucleus to finally dock and integrate into the cellular genome. Along this journey, retroviruses hijack the cellular machinery, while at the same time counteracting cellular defenses. Elucidating these mechanisms and identifying which cellular factors are exploited by the retroviruses and which hinder their life cycle, will certainly lead to the discovery of new ways to inhibit viral replication and to improve retroviral vectors for gene transfer. Finally, as proven by many examples in the past, progresses in retrovirology will undoubtedly also provide some priceless insights into cell biology.
                Bookmark

                Author and article information

                Journal
                Retrovirology
                Retrovirology
                Retrovirology
                BioMed Central
                1742-4690
                2012
                9 March 2012
                : 9
                : 19
                Affiliations
                [1 ]National Center for Biodefense and Infectious Diseases, George Mason University, Discovery Hall, Room 182, University Blvd. MS 1H8, 10900 Manassas, VA, USA
                Article
                1742-4690-9-19
                10.1186/1742-4690-9-19
                3311033
                22405323
                b6835079-13b3-41b6-a713-93bde9cd8b7a
                Copyright ©2012 Tyagi and Kashanchi; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 6 December 2011
                : 9 March 2012
                Categories
                Commentary

                Microbiology & Virology
                therapy,hiv,host restriction factors,interferon
                Microbiology & Virology
                therapy, hiv, host restriction factors, interferon

                Comments

                Comment on this article