24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Can Molecular Motors Drive Distance Measurements in Injured Neurons?

      research-article
      1 , 2 , 1 , *
      PLoS Computational Biology
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Injury to nerve axons induces diverse responses in neuronal cell bodies, some of which are influenced by the distance from the site of injury. This suggests that neurons have the capacity to estimate the distance of the injury site from their cell body. Recent work has shown that the molecular motor dynein transports importin-mediated retrograde signaling complexes from axonal lesion sites to cell bodies, raising the question whether dynein-based mechanisms enable axonal distance estimations in injured neurons? We used computer simulations to examine mechanisms that may provide nerve cells with dynein-dependent distance assessment capabilities. A multiple-signals model was postulated based on the time delay between the arrival of two or more signals produced at the site of injury–a rapid signal carried by action potentials or similar mechanisms and slower signals carried by dynein. The time delay between the arrivals of these two types of signals should reflect the distance traversed, and simulations of this model show that it can indeed provide a basis for distance measurements in the context of nerve injuries. The analyses indicate that the suggested mechanism can allow nerve cells to discriminate between distances differing by 10% or more of their total axon length, and suggest that dynein-based retrograde signaling in neurons can be utilized for this purpose over different scales of nerves and organisms. Moreover, such a mechanism might also function in synapse to nucleus signaling in uninjured neurons. This could potentially allow a neuron to dynamically sense the relative lengths of its processes on an ongoing basis, enabling appropriate metabolic output from cell body to processes.

          Author Summary

          Neurons have extremely long axonal processes that can reach lengths of up to 1 meter in human peripheral nerves. The neuronal cell body response to nerve injury is dependent on signals carried by molecular motors from the lesion site in the axon. The distance between the injury site and the cell body influences the type of response, suggesting that neurons must be able to estimate the distance of an axonal injury site, although how they do this is unknown. We have used a computational approach to model intracellular distance measurement after nerve injury. The models show the feasibility of a mechanism based on a rapid, near instantaneous, signal carried by action potentials in the nerve, followed by multiple slower signals carried on molecular motors. Such a mechanism can enable a neuron to discriminate between distances as close as 10% of total axon length. The model provides insights on retrograde injury signaling in neurons, including the biological relevance of the mechanism over different scales of nerves and organisms. Moreover, if similar mechanisms function in synapse to nucleus signaling in uninjured neurons, this could enable estimation of relative process lengths, thus guiding metabolic output from cell bodies to axons.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          CD28/B7 system of T cell costimulation.

          T cells play a central role in the initiation and regulation of the immune response to antigen. Both the engagement of the TCR with MHC/Ag and a second signal are needed for the complete activation of the T cell. The CD28/B7 receptor/ligand system is one of the dominant costimulatory pathways. Interruption of this signaling pathway with CD28 antagonists not only results in the suppression of the immune response, but in some cases induces antigen-specific tolerance. However, the CD28/B7 system is increasingly complex due to the identification of multiple receptors and ligands with positive and negative signaling activities. This review summarizes the state of CD28/B7 immunobiology both in vitro and in vivo; summarizes the many experiments that have led to our current understanding of the participants in this complex receptor/ligand system; and illustrates the current models for CD28/B7-mediated T cell and B cell regulation. It is our hope and expectation that this review will provoke additional research that will unravel this important, yet complex, signaling pathway.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Activating transcription factor 3 (ATF3) induction by axotomy in sensory and motoneurons: A novel neuronal marker of nerve injury.

            Activating transcription factor 3 (ATF3), a member of ATF/CREB family of transcription factors, is induced in a variety of stressed tissue. ATF3 regulates transcription by binding to DNA sites as a homodimer or heterodimer with Jun proteins. The purpose of this study was to examine the expression and regulation of ATF3 after axonal injury in neurons in dorsal root ganglia (DRG) and spinal cord. In naive rats, ATF3 was not expressed in the DRG and spinal cord. Following the cut of peripheral nerve, ATF3 was immediately induced in virtually all DRG neurons and motoneurons that were axotomized, and the time course of induction was dependent on the distance between the injury site and the cell body. Double labeling using immunohistochemistry revealed that the population of DRG neurons expressing ATF3 included those expressing c-jun, and in motoneurons ATF3 and c-jun were concurrently expressed after axotomy. In contrast to c-jun, ATF3 was not induced transsynaptically in spinal dorsal horn neurons. We conclude that ATF3 is specifically induced in sensory and motoneurons in the spinal cord following nerve injury and should be regarded as an unique neuronal marker of nerve injury in the nervous system. Copyright 2000 Academic Press.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Rab5 and Rab7 control endocytic sorting along the axonal retrograde transport pathway.

              Vesicular pathways coupling the neuromuscular junction with the motor neuron soma are essential for neuronal function and survival. To characterize the organelles responsible for this long-distance crosstalk, we developed a purification strategy based on a fragment of tetanus neurotoxin (TeNT H(C)) conjugated to paramagnetic beads. This approach enabled us to identify, among other factors, the small GTPase Rab7 as a functional marker of a specific pool of axonal retrograde carriers, which transport neurotrophins and their receptors. Furthermore, Rab5 is essential for an early step in TeNT H(C) sorting but is absent from axonally transported vesicles. Our data demonstrate that TeNT H(C) uses a retrograde transport pathway shared with p75(NTR), TrkB, and BDNF, which is strictly dependent on the activities of both Rab5 and Rab7. Therefore, Rab7 plays an essential role in axonal retrograde transport by controlling a vesicular compartment implicated in neurotrophin traffic.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Comput Biol
                plos
                ploscomp
                PLoS Computational Biology
                Public Library of Science (San Francisco, USA )
                1553-734X
                1553-7358
                August 2009
                August 2009
                21 August 2009
                : 5
                : 8
                : e1000477
                Affiliations
                [1 ]Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
                [2 ]Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
                ETH Zurich, Switzerland
                Author notes

                Conceived and designed the experiments: NK YP MF. Performed the experiments: NK. Analyzed the data: NK. Wrote the paper: NK YP MF.

                Article
                09-PLCB-RA-0341R2
                10.1371/journal.pcbi.1000477
                2718615
                19696880
                b6accb97-614e-4cee-a1c1-0735ca3dbf5b
                Kam et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 1 April 2009
                : 20 July 2009
                Page count
                Pages: 14
                Categories
                Research Article
                Cell Biology/Cell Signaling
                Computational Biology/Signaling Networks
                Neuroscience/Neurobiology of Disease and Regeneration
                Neuroscience/Neuronal Signaling Mechanisms

                Quantitative & Systems biology
                Quantitative & Systems biology

                Comments

                Comment on this article