Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Classification of Pulmonary CT Images by Using Hybrid 3D-Deep Convolutional Neural Network Architecture

      ,
      Applied Sciences
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Lung cancer is the most common cause of cancer-related deaths worldwide. Hence, the survival rate of patients can be increased by early diagnosis. Recently, machine learning methods on Computed Tomography (CT) images have been used in the diagnosis of lung cancer to accelerate the diagnosis process and assist physicians. However, in conventional machine learning techniques, using handcrafted feature extraction methods on CT images are complicated processes. Hence, deep learning as an effective area of machine learning methods by using automatic feature extraction methods could minimize the process of feature extraction. In this study, two Convolutional Neural Network (CNN)-based models were proposed as deep learning methods to diagnose lung cancer on lung CT images. To investigate the performance of the two proposed models (Straight 3D-CNN with conventional softmax and hybrid 3D-CNN with Radial Basis Function (RBF)-based SVM), the altered models of two-well known CNN architectures (3D-AlexNet and 3D-GoogleNet) were considered. Experimental results showed that the performance of the two proposed models surpassed 3D-AlexNet and 3D-GoogleNet. Furthermore, the proposed hybrid 3D-CNN with SVM achieved more satisfying results (91.81%, 88.53% and 91.91% for accuracy rate, sensitivity and precision respectively) compared to straight 3D-CNN with softmax in the diagnosis of lung cancer.

          Related collections

          Most cited references20

          • Record: found
          • Abstract: found
          • Article: not found

          Deep learning.

          Deep learning allows computational models that are composed of multiple processing layers to learn representations of data with multiple levels of abstraction. These methods have dramatically improved the state-of-the-art in speech recognition, visual object recognition, object detection and many other domains such as drug discovery and genomics. Deep learning discovers intricate structure in large data sets by using the backpropagation algorithm to indicate how a machine should change its internal parameters that are used to compute the representation in each layer from the representation in the previous layer. Deep convolutional nets have brought about breakthroughs in processing images, video, speech and audio, whereas recurrent nets have shone light on sequential data such as text and speech.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A fast learning algorithm for deep belief nets.

            We show how to use "complementary priors" to eliminate the explaining-away effects that make inference difficult in densely connected belief nets that have many hidden layers. Using complementary priors, we derive a fast, greedy algorithm that can learn deep, directed belief networks one layer at a time, provided the top two layers form an undirected associative memory. The fast, greedy algorithm is used to initialize a slower learning procedure that fine-tunes the weights using a contrastive version of the wake-sleep algorithm. After fine-tuning, a network with three hidden layers forms a very good generative model of the joint distribution of handwritten digit images and their labels. This generative model gives better digit classification than the best discriminative learning algorithms. The low-dimensional manifolds on which the digits lie are modeled by long ravines in the free-energy landscape of the top-level associative memory, and it is easy to explore these ravines by using the directed connections to display what the associative memory has in mind.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Receptive fields and functional architecture of monkey striate cortex

                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                ASPCC7
                Applied Sciences
                Applied Sciences
                MDPI AG
                2076-3417
                March 2019
                March 06 2019
                : 9
                : 5
                : 940
                Article
                10.3390/app9050940
                b6d3a851-dc85-4de8-9aff-c02953f3f4b5
                © 2019

                https://creativecommons.org/licenses/by/4.0/

                History

                Quantitative & Systems biology,Biophysics
                Quantitative & Systems biology, Biophysics

                Comments

                Comment on this article