76
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Magneto-aerotactic bacteria deliver drug-containing nanoliposomes to tumour hypoxic regions

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Oxygen depleted hypoxic regions in the tumour are generally resistant to therapies 1 . Although nanocarriers have been used to deliver drugs, the targeting ratios have been very low. Here, we show that the magneto-aerotactic migration behaviour 2 of magnetotactic bacteria 3 , Magnetococcus marinus strain MC-1 4 , can be used to transport drug-loaded nanoliposomes into hypoxic regions of the tumour. In their natural environment, MC-1 cells, each containing a chain of magnetic iron-oxide nanocrystals 5 , tend to swim along local magnetic field lines and towards low oxygen concentrations 6 based on a two-state aerotactic sensing system 2 . We show that when MC-1 cells bearing covalently bound drug-containing nanoliposomes were injected near the tumour in SCID Beige mice and magnetically guided, up to 55% of MC-1 cells penetrated into hypoxic regions of HCT116 colorectal xenografts. Approximately 70 drug-loaded nanoliposomes were attached to each MC-1 cell. Our results suggest that harnessing swarms of microorganisms exhibiting magneto-aerotactic behaviour can significantly improve the therapeutic index of various nanocarriers in tumour hypoxic regions.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          Microscopic artificial swimmers.

          Microorganisms such as bacteria and many eukaryotic cells propel themselves with hair-like structures known as flagella, which can exhibit a variety of structures and movement patterns. For example, bacterial flagella are helically shaped and driven at their bases by a reversible rotary engine, which rotates the attached flagellum to give a motion similar to that of a corkscrew. In contrast, eukaryotic cells use flagella that resemble elastic rods and exhibit a beating motion: internally generated stresses give rise to a series of bends that propagate towards the tip. In contrast to this variety of swimming strategies encountered in nature, a controlled swimming motion of artificial micrometre-sized structures has not yet been realized. Here we show that a linear chain of colloidal magnetic particles linked by DNA and attached to a red blood cell can act as a flexible artificial flagellum. The filament aligns with an external uniform magnetic field and is readily actuated by oscillating a transverse field. We find that the actuation induces a beating pattern that propels the structure, and that the external fields can be adjusted to control the velocity and the direction of motion.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Hypoxia in cancer: significance and impact on clinical outcome.

            Hypoxia, a characteristic feature of locally advanced solid tumors, has emerged as a pivotal factor of the tumor (patho-)physiome since it can promote tumor progression and resistance to therapy. Hypoxia represents a "Janus face" in tumor biology because (a) it is associated with restrained proliferation, differentiation, necrosis or apoptosis, and (b) it can also lead to the development of an aggressive phenotype. Independent of standard prognostic factors, such as tumor stage and nodal status, hypoxia has been suggested as an adverse prognostic factor for patient outcome. Studies of tumor hypoxia involving the direct assessment of the oxygenation status have suggested worse disease-free survival for patients with hypoxic cervical cancers or soft tissue sarcomas. In head & neck cancers the studies suggest that hypoxia is prognostic for survival and local control. Technical limitations of the direct O(2) sensing technique have prompted the use of surrogate markers for tumor hypoxia, such as hypoxia-related endogenous proteins (e.g., HIF-1alpha, GLUT-1, CA IX) or exogenous bioreductive drugs. In many - albeit not in all - studies endogenous markers showed prognostic significance for patient outcome. The prognostic relevance of exogenous markers, however, appears to be limited. Noninvasive assessment of hypoxia using imaging techniques can be achieved with PET or SPECT detection of radiolabeled tracers or with MRI techniques (e.g., BOLD). Clinical experience with these methods regarding patient prognosis is so far only limited. In the clinical studies performed up until now, the lack of standardized treatment protocols, inconsistencies of the endpoints characterizing the oxygenation status and methodological differences (e.g., different immunohistochemical staining procedures) may compromise the power of the prognostic parameter used.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Magnetotactic bacteria.

              Bacteria with motility directed by the local geomagnetic field have been observed in marine sediments. These magnetotactic microorganisms possess flagella and contain novel structured particles, rich in iron, within intracytoplasmic membrane vesicles. Conceivably these particles impart to cells a magnetic moment. This could explain the observed migration of these organisms in fields as weak as 0.5 gauss.
                Bookmark

                Author and article information

                Journal
                101283273
                34218
                Nat Nanotechnol
                Nat Nanotechnol
                Nature nanotechnology
                1748-3387
                1748-3395
                7 July 2016
                15 August 2016
                November 2016
                16 August 2018
                : 11
                : 11
                : 941-947
                Affiliations
                [1 ]NanoRobotics Laboratory, Dept. of Computer and Software Eng., Inst. of Biomedical Eng., Polytechnique Montréal, Montréal, Canada
                [2 ]Segal Cancer Centre, Jewish General Hospital, Dept. of Oncology, McGill University, Montréal, Canada
                [3 ]Rosalind and Morris Goodman Cancer Research Centre, Dept. of Biochemistry, Medicine and Oncology, McGill University, Montréal, Canada
                [4 ]Dept. of Chemistry, University of Montréal (UdM), Montréal, Canada
                [5 ]Institute for Research in Immunology and Cancer (IRIC), Dept. of Pathology and Cell Biology, University of Montréal, Montréal, Canada
                [6 ]McGill University Health Centre, Montréal, Canada
                [7 ]Dept. of Biomedical Eng., McGill University, Montréal, Canada
                [8 ]Faculty of Dentistry, McGill University, Montréal, Canada
                Author notes
                [& ]Corresponding author ( sylvain.martel@ 123456polymtl.ca )
                [*]

                These authors contributed equally to this work

                Article
                NIHMS798269
                10.1038/nnano.2016.137
                6094936
                27525475
                b6ec1c1d-a6e8-45bc-bf6a-faf2a31bcb2d

                Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

                Reprints and permissions information is available online at www.nature.com/reprintsandpermissions/.

                History
                Categories
                Article

                Nanotechnology
                Nanotechnology

                Comments

                Comment on this article