25
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Global climate change and the Baltic Sea ecosystem: direct and indirect effects on species, communities and ecosystem functioning

      ,
      Earth System Dynamics
      Copernicus GmbH

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Abstract. Climate change has multiple effects on Baltic Sea species, communities and ecosystem functioning through changes in physical and biogeochemical environmental characteristics of the sea. Associated indirect and secondary effects on species interactions, trophic dynamics and ecosystem function are expected to be significant. We review studies investigating species-, population- and ecosystem-level effects of abiotic factors that may change due to global climate change, such as temperature, salinity, oxygen, pH, nutrient levels, and the more indirect biogeochemical and food web processes, primarily based on peer-reviewed literature published since 2010. For phytoplankton, clear symptoms of climate change, such as prolongation of the growing season, are evident and can be explained by the warming, but otherwise climate effects vary from species to species and area to area. Several modelling studies project a decrease of phytoplankton bloom in spring and an increase in cyanobacteria blooms in summer. The associated increase in N:P ratio may contribute to maintaining the “vicious circle of eutrophication”. However, uncertainties remain because some field studies claim that cyanobacteria have not increased and some experimental studies show that responses of cyanobacteria to temperature, salinity and pH vary from species to species. An increase of riverine dissolved organic matter (DOM) may also decrease primary production, but the relative importance of this process in different sea areas is not well known. Bacteria growth is favoured by increasing temperature and DOM, but complex effects in the microbial food web are probable. Warming of seawater in spring also speeds up zooplankton growth and shortens the time lag between phytoplankton and zooplankton peaks, which may lead to decreasing of phytoplankton in spring. In summer, a shift towards smaller-sized zooplankton and a decline of marine copepod species has been projected. In deep benthic communities, continued eutrophication promotes high sedimentation and maintains good food conditions for zoobenthos. If nutrient abatement proceeds, improving oxygen conditions will first increase zoobenthos biomass, but the subsequent decrease of sedimenting matter will disrupt the pelagic–benthic coupling and lead to a decreased zoobenthos biomass. In the shallower photic systems, heatwaves may produce eutrophication-like effects, e.g. overgrowth of bladderwrack by epiphytes, due to a trophic cascade. If salinity also declines, marine species such as bladderwrack, eelgrass and blue mussel may decline. Freshwater vascular plants will be favoured but they cannot replace macroalgae on rocky substrates. Consequently invertebrates and fish benefiting from macroalgal belts may also suffer. Climate-induced changes in the environment also favour establishment of non-indigenous species, potentially affecting food web dynamics in the Baltic Sea. As for fish, salinity decline and continuing of hypoxia is projected to keep cod stocks low, whereas the increasing temperature has been projected to favour sprat and certain coastal fish. Regime shifts and cascading effects have been observed in both pelagic and benthic systems as a result of several climatic and environmental effects acting synergistically. Knowledge gaps include uncertainties in projecting the future salinity level, as well as stratification and potential rate of internal loading, under different climate forcings. This weakens our ability to project how pelagic productivity, fish populations and macroalgal communities may change in the future. The 3D ecosystem models, food web models and 2D species distribution models would benefit from integration, but progress is slowed down by scale problems and inability of models to consider the complex interactions between species. Experimental work should be better integrated into empirical and modelling studies of food web dynamics to get a more comprehensive view of the responses of the pelagic and benthic systems to climate change, from bacteria to fish. In addition, to better understand the effects of climate change on the biodiversity of the Baltic Sea, more emphasis should be placed on studies of shallow photic environments. The fate of the Baltic Sea ecosystem will depend on various intertwined environmental factors and on development of the society. Climate change will probably delay the effects of nutrient abatement and tend to keep the ecosystem in its “novel” state. However, several modelling studies conclude that nutrient reductions will be a stronger driver for ecosystem functioning of the Baltic Sea than climate change. Such studies highlight the importance of studying the Baltic Sea as an interlinked socio-ecological system.

          Related collections

          Most cited references280

          • Record: found
          • Abstract: found
          • Article: found

          Climate change impacts on marine ecosystems.

          In marine ecosystems, rising atmospheric CO2 and climate change are associated with concurrent shifts in temperature, circulation, stratification, nutrient input, oxygen content, and ocean acidification, with potentially wide-ranging biological effects. Population-level shifts are occurring because of physiological intolerance to new environments, altered dispersal patterns, and changes in species interactions. Together with local climate-driven invasion and extinction, these processes result in altered community structure and diversity, including possible emergence of novel ecosystems. Impacts are particularly striking for the poles and the tropics, because of the sensitivity of polar ecosystems to sea-ice retreat and poleward species migrations as well as the sensitivity of coral-algal symbiosis to minor increases in temperature. Midlatitude upwelling systems, like the California Current, exhibit strong linkages between climate and species distributions, phenology, and demography. Aggregated effects may modify energy and material flows as well as biogeochemical cycles, eventually impacting the overall ecosystem functioning and services upon which people and societies depend.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The impact of climate change on the world's marine ecosystems.

            Marine ecosystems are centrally important to the biology of the planet, yet a comprehensive understanding of how anthropogenic climate change is affecting them has been poorly developed. Recent studies indicate that rapidly rising greenhouse gas concentrations are driving ocean systems toward conditions not seen for millions of years, with an associated risk of fundamental and irreversible ecological transformation. The impacts of anthropogenic climate change so far include decreased ocean productivity, altered food web dynamics, reduced abundance of habitat-forming species, shifting species distributions, and a greater incidence of disease. Although there is considerable uncertainty about the spatial and temporal details, climate change is clearly and fundamentally altering ocean ecosystems. Further change will continue to create enormous challenges and costs for societies worldwide, particularly those in developing countries.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              DNA barcoding and metabarcoding of standardized samples reveal patterns of marine benthic diversity.

              Documenting the diversity of marine life is challenging because many species are cryptic, small, and rare, and belong to poorly known groups. New sequencing technologies, especially when combined with standardized sampling, promise to make comprehensive biodiversity assessments and monitoring feasible on a large scale. We used this approach to characterize patterns of diversity on oyster reefs across a range of geographic scales comprising a temperate location [Virginia (VA)] and a subtropical location [Florida (FL)]. Eukaryotic organisms that colonized multilayered settlement surfaces (autonomous reef monitoring structures) over a 6-mo period were identified by cytochrome c oxidase subunit I barcoding (>2-mm mobile organisms) and metabarcoding (sessile and smaller mobile organisms). In a total area of ∼ 15.64 m(2) and volume of ∼ 0.09 m(3), 2,179 operational taxonomic units (OTUs) were recorded from 983,056 sequences. However, only 10.9% could be matched to reference barcodes in public databases, with only 8.2% matching barcodes with both genus and species names. Taxonomic coverage was broad, particularly for animals (22 phyla recorded), but 35.6% of OTUs detected via metabarcoding could not be confidently assigned to a taxonomic group. The smallest size fraction (500 to 106 μm) was the most diverse (more than two-thirds of OTUs). There was little taxonomic overlap between VA and FL, and samples separated by ∼ 2 m were significantly more similar than samples separated by ∼ 100 m. Ground-truthing with independent assessments of taxonomic composition indicated that both presence-absence information and relative abundance information are captured by metabarcoding data, suggesting considerable potential for ecological studies and environmental monitoring.
                Bookmark

                Author and article information

                Journal
                Earth System Dynamics
                Earth Syst. Dynam.
                Copernicus GmbH
                2190-4987
                2022
                April 11 2022
                : 13
                : 2
                : 711-747
                Article
                10.5194/esd-13-711-2022
                b7053bfb-6c16-44dc-9969-88604b59e3e8
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article