2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Enhanced photocatalytic H2/H2O2 production and tetracycline degradation performance of CdSe quantum dots supported on K, P, N-co-doped hollow carbon polyhedrons

      , , , ,
      Chemical Engineering Journal
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: found
          • Article: not found

          Heterogeneous photocatalyst materials for water splitting.

          This critical review shows the basis of photocatalytic water splitting and experimental points, and surveys heterogeneous photocatalyst materials for water splitting into H2 and O2, and H2 or O2 evolution from an aqueous solution containing a sacrificial reagent. Many oxides consisting of metal cations with d0 and d10 configurations, metal (oxy)sulfide and metal (oxy)nitride photocatalysts have been reported, especially during the latest decade. The fruitful photocatalyst library gives important information on factors affecting photocatalytic performances and design of new materials. Photocatalytic water splitting and H2 evolution using abundant compounds as electron donors are expected to contribute to construction of a clean and simple system for solar hydrogen production, and a solution of global energy and environmental issues in the future (361 references).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting.

            The increasing human need for clean and renewable energy has stimulated research in artificial photosynthesis, and in particular water photoelectrolysis as a pathway to hydrogen fuel. Nanostructured devices are widely regarded as an opportunity to improve efficiency and lower costs, but as a detailed analysis shows, they also have considerably disadvantages. This article reviews the current state of research on nanoscale-enhanced photoelectrodes and photocatalysts for the water splitting reaction. The focus is on transition metal oxides with special emphasis of Fe(2)O(3), but nitrides and chalcogenides, and main group element compounds, including carbon nitride and silicon, are also covered. The effects of nanostructuring on carrier generation and collection, multiple exciton generation, and quantum confinement are also discussed, as well as implications of particle size on surface recombination, on the size of space charge layers and on the possibility of controlling nanostructure energetics via potential determining ions. After a summary of electrocatalytic and plasmonic nanostructures, the review concludes with an outlook on the challenges in solar fuel generation with nanoscale inorganic materials.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              MOF-derived electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions

              The morphology and composition design of MOF-derived carbon-based materials and their applications for electrocatalytic ORR, OER and HER are reviewed. Oxygen reduction reaction (ORR), oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) are three key reactions for the development of green and sustainable energy systems. Efficient electrocatalysts for these reactions are highly desired to lower their overpotentials and promote practical applications of related energy devices. Metal–organic frameworks (MOFs) have recently emerged as precursors to fabricate carbon-based electrocatalysts with high electrical conductivity and uniformly distributed active sites. In this review, the current progress of MOF-derived carbon-based materials for ORR/OER/HER electrocatalysis is presented. Materials design strategies of MOF-derived carbon-based materials are firstly summarized to show the rich possibilities of the morphology and composition of MOF-derived carbon-based materials. A wide range of applications based on these materials for ORR, OER, HER and multifunctional electrocatalysis are discussed, with an emphasis on the required features of MOF-derived carbon-based materials for the electrocatalysis of corresponding reactions. Finally, perspectives on the development of MOF-derived carbon-based materials for ORR, OER and HER electrocatalysis are provided.
                Bookmark

                Author and article information

                Journal
                Chemical Engineering Journal
                Chemical Engineering Journal
                Elsevier BV
                13858947
                December 2021
                December 2021
                : 426
                : 130808
                Article
                10.1016/j.cej.2021.130808
                b71bfb3a-4ab1-467f-95b0-3703f7e5d7e0
                © 2021

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article