21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Differential Contributions of Rare and Common, Coding and Noncoding Ret Mutations to Multifactorial Hirschsprung Disease Liability

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The major gene for Hirschsprung disease (HSCR) encodes the receptor tyrosine kinase RET. In a study of 690 European- and 192 Chinese-descent probands and their parents or controls, we demonstrate the ubiquity of a >4-fold susceptibility from a C-->T allele (rs2435357: p = 3.9 x 10(-43) in European ancestry; p = 1.1 x 10(-21) in Chinese samples) that probably arose once within the intronic RET enhancer MCS+9.7. With in vitro assays, we now show that the T variant disrupts a SOX10 binding site within MCS+9.7 that compromises RET transactivation. The T allele, with a control frequency of 20%-30%/47% and case frequency of 54%-62%/88% in European/Chinese-ancestry individuals, is involved in all forms of HSCR. It is marginally associated with proband gender (p = 0.13) and significantly so with length of aganglionosis (p = 7.6 x 10(-5)) and familiality (p = 6.2 x 10(-4)). The enhancer variant is more frequent in the common forms of male, short-segment, and simplex families whereas multiple, rare, coding mutations are the norm in the less common and more severe forms of female, long-segment, and multiplex families. The T variant also increases penetrance in patients with rare RET coding mutations. Thus, both rare and common mutations, individually and together, make contributions to the risk of HSCR. The distribution of RET variants in diverse HSCR patients suggests a "cellular-recessive" genetic model where both RET alleles' function is compromised. The RET allelic series, and its genotype-phenotype correlations, shows that success in variant identification in complex disorders may strongly depend on which patients are studied. Copyright 2010 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

          Related collections

          Author and article information

          Journal
          The American Journal of Human Genetics
          The American Journal of Human Genetics
          Elsevier BV
          00029297
          July 2010
          July 2010
          : 87
          : 1
          : 60-74
          Article
          10.1016/j.ajhg.2010.06.007
          2896767
          20598273
          b71fadff-2ba3-43e1-b405-2602b2962cdc
          © 2010

          https://www.elsevier.com/tdm/userlicense/1.0/

          https://www.elsevier.com/open-access/userlicense/1.0/

          History

          Comments

          Comment on this article