3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      A new spin label method for the measurement of erythrocyte internal microviscosity.

      , , , ,
      Biochimica et biophysica acta

      Read this article at

      ScienceOpenPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A new spin-label method for the measurement of the internal microviscosity of erythrocyte is presented. The spin label used is 2,2',5,5'-tetramethyl-3-maleimidopyrrolidinyl-N-oxyl (MAL-5) which penetrates inside the red blood cell and binds covalently on cytoplasmic glutathione. After washing off the external label, 98% of the electron paramagnetic signal is due to the labelled glutathione. This signal allows one to measure the rotational correlation time of the label. A calibration curve established with spin-labelled glutathione in sucrose solutions of increasing viscosity is used to convert the measured rotation times into viscosity units. This method avoids the use of unphysiological salts like potassium ferricyanide, and permits the study of red blood cells in various suspension media. In normal human subjects, the mean value of microviscosity is 4.45 +/- 0.16 mPa . s at 20 degrees C in isotonic saline (25 subjects) and 6 +/- 0.25 mPa . s in plasma. The variations of microviscosity as a function of the osmolarity of the medium are explained according to a theoretical model taking into account the variations of the red blood cell volume and the viscometric properties of haemoglobin.

          Related collections

          Author and article information

          Journal
          Biochim. Biophys. Acta
          Biochimica et biophysica acta
          0006-3002
          0006-3002
          Aug 17 1983
          : 763
          : 1
          Article
          0167-4889(83)90023-X
          6307391
          b7281422-bb6d-4eda-9600-3e4ee99dee9e
          History

          Comments

          Comment on this article