10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Clinical Characteristics of Neuronal Intranuclear Inclusion Disease-Related Retinopathy With CGG Repeat Expansions in the NOTCH2NLC Gene

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose

          To report the ocular characteristics of neuronal intranuclear inclusion disease (NIID)–related retinopathy with expansion of the CGG repeats in the NOTCH2NLC gene.

          Methods

          Seven patients from six families (aged 66–81 years) diagnosed with adult-onset NIID were studied. Ophthalmologic examinations, including the best-corrected visual acuity (BCVA), Goldmann perimetry, fundus photography, fundus autofluorescence (FAF) imaging, optical coherence tomography (OCT), and full-field electroretinography (ERGs), were performed. The expansion of the CGG repeats in the NOTCH2NLC gene was determined.

          Results

          All patients had an expansion of the CGG repeats (length approximately from 330–520 bp) in the NOTCH2NLC gene. The most common symptoms of the five symptomatic cases were reduced BCVA and night blindness. The other two cases did not have any ocular symptoms. The decimal BCVA varied from 0.15 to 1.2. Goldmann perimetry was constricted in all four cases tested; physiological blind spot was enlarged in two of the cases. The FAF images showed an absence of autofluorescence (AF) around the optic disc in all cases and also showed mild hypo-AF or extinguished AF in the midperiphery. In all cases, the OCT images showed an absence of the ellipsoid zone of the photoreceptors in the peripapillary region, and hyperreflective dots were also present between the retinal ganglion cell layer and outer nuclear layer. The macular region was involved in the late stage of the retinopathy. The full-field ERGs showed rod-cone dysfunction.

          Conclusions

          Patients with adult-onset NIID with CGG repeats expansions in the NOTCH2NLC gene had similar ophthalmologic features, including rod-cone dysfunction with progressive retinal degeneration in the peripapillary and midperipheral regions. The primary site is most likely the photoreceptors. Because the ocular symptoms are often overlooked due to dementia and occasionally precede the onset of dementia, detailed ophthalmological examinations are important for the early diagnosis of NIID-related retinopathy.

          Related collections

          Most cited references16

          • Record: found
          • Abstract: found
          • Article: not found

          Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome.

          Fragile X syndrome is the most frequent form of inherited mental retardation and is associated with a fragile site at Xq27.3. We identified human YAC clones that span fragile X site-induced translocation breakpoints coincident with the fragile X site. A gene (FMR-1) was identified within a four cosmid contig of YAC DNA that expresses a 4.8 kb message in human brain. Within a 7.4 kb EcoRI genomic fragment, containing FMR-1 exonic sequences distal to a CpG island previously shown to be hypermethylated in fragile X patients, is a fragile X site-induced breakpoint cluster region that exhibits length variation in fragile X chromosomes. This fragment contains a lengthy CGG repeat that is 250 bp distal of the CpG island and maps within a FMR-1 exon. Localization of the brain-expressed FMR-1 gene to this EcoRI fragment suggests the involvement of this gene in the phenotypic expression of the fragile X syndrome.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Molecular basis of myotonic dystrophy: expansion of a trinucleotide (CTG) repeat at the 3' end of a transcript encoding a protein kinase family member.

            Using positional cloning strategies, we have identified a CTG triplet repeat that undergoes expansion in myotonic dystrophy patients. This sequence is highly variable in the normal population. PCR analysis of the interval containing this repeat indicates that unaffected individuals have been 5 and 27 copies. Myotonic dystrophy patients who are minimally affected have at least 50 repeats, while more severely affected patients have expansion of the repeat containing segment up to several kilobase pairs. The CTG repeat is transcribed and is located in the 3' untranslated region of an mRNA that is expressed in tissues affected by myotonic dystrophy. This mRNA encodes a polypeptide that is a member of the protein kinase family.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type 1.

              Spinocerebellar ataxia type 1 (SCA1) is an autosomal dominant disorder characterized by neurodegeneration of the cerebellum, spinal cord and brainstem. A 1.2-Megabase stretch of DNA from the short arm of chromosome 6 containing the SCA1 locus was isolated in a yeast artificial chromosome contig and subcloned into cosmids. A highly polymorphic CAG repeat was identified in this region and was found to be unstable and expanded in individuals with SCA1. There is a direct correlation between the size of the (CAG)n repeat expansion and the age-of-onset of SCA1, with larger alleles occurring in juvenile cases. We also show that the repeat is present in a 10 kilobase mRNA transcript. SCA1 is therefore the fifth genetic disorder to display a mutational mechanism involving an unstable trinucleotide repeat.
                Bookmark

                Author and article information

                Journal
                Invest Ophthalmol Vis Sci
                Invest. Ophthalmol. Vis. Sci
                iovs
                IOVS
                Investigative Ophthalmology & Visual Science
                The Association for Research in Vision and Ophthalmology
                0146-0404
                1552-5783
                15 September 2020
                September 2020
                : 61
                : 11
                : 27
                Affiliations
                [1 ]Department of Ophthalmology, The University of Tokyo, Tokyo, Japan
                [2 ]Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
                [3 ]Department of Neurology, The University of Tokyo, Tokyo, Japan
                [4 ]Department of Molecular Neurology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
                [5 ]Institute of Medical Genomics, International University of Health and Welfare, Chiba, Japan
                Author notes
                Correspondence: Natsuko Nakamura, Department of Ophthalmology, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-8655, Japan; nakamura-ntk@ 123456umin.ac.jp .
                Article
                IOVS-20-29406
                10.1167/iovs.61.11.27
                7500143
                32931575
                b787be70-09c8-49c6-9111-8ecd0cf1fb64
                Copyright 2020 The Authors

                This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

                History
                : 12 August 2020
                : 29 January 2020
                Page count
                Pages: 10
                Categories
                Retina
                Retina

                neuronal intranuclear inclusion disease,retinal dystrophy,cgg repeat,notch2nlc/nbpf19 gene,dementia

                Comments

                Comment on this article