10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      MiR-200c Regulates Noxa Expression and Sensitivity to Proteasomal Inhibitors

      research-article
      * , , ,
      PLoS ONE
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The pro-apoptotic p53 target Noxa is a BH3-only protein that antagonizes the function of selected anti-apoptotic Bcl-2 family members. While much is known regarding the transcriptional regulation of Noxa, its posttranscriptional regulation remains relatively unstudied. In this study, we therefore investigated whether Noxa is regulated by microRNAs. Using a screen combining luciferase reporters, bioinformatic target prediction analysis and microRNA expression profiling, we identified miR-200c as a negative regulator of Noxa expression. MiR-200c was shown to repress basal expression of Noxa, as well as Noxa expression induced by various stimuli, including proteasomal inhibition. Luciferase reporter experiments furthermore defined one miR-200c target site in the Noxa 3′UTR that is essential for this direct regulation. In spite of the miR-200c:Noxa interaction, miR-200c overexpression led to increased sensitivity to the clinically used proteasomal inhibitor bortezomib in several cell lines. This apparently contradictory finding was reconciled by the fact that in cells devoid of Noxa expression, miR-200c overexpression had an even more pronounced positive effect on apoptosis induced by proteasomal inhibition. Together, our data define miR-200c as a potentiator of bortezomib-induced cell death. At the same time, we show that miR-200c is a novel negative regulator of the pro-apoptotic Bcl-2 family member Noxa.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          Gene silencing by microRNAs: contributions of translational repression and mRNA decay.

          Despite their widespread roles as regulators of gene expression, important questions remain about target regulation by microRNAs. Animal microRNAs were originally thought to repress target translation, with little or no influence on mRNA abundance, whereas the reverse was thought to be true in plants. Now, however, it is clear that microRNAs can induce mRNA degradation in animals and, conversely, translational repression in plants. Recent studies have made important advances in elucidating the relative contributions of these two different modes of target regulation by microRNAs. They have also shed light on the specific mechanisms of target silencing, which, although it differs fundamentally between plants and animals, shares some common features between the two kingdoms.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Differential targeting of prosurvival Bcl-2 proteins by their BH3-only ligands allows complementary apoptotic function.

            Apoptosis is initiated when Bcl-2 and its prosurvival relatives are engaged by proapoptotic BH3-only proteins via interaction of its BH3 domain with a groove on the Bcl-2-like proteins. These interactions have been considered promiscuous, but our analysis of the affinity of eight BH3 peptides for five Bcl-2-like proteins has revealed that the interactions vary over 10,000-fold in affinity, and accordingly, only certain protein pairs associate inside cells. Bim and Puma potently engaged all the prosurvival proteins comparably. Bad, however, bound tightly to Bcl-2, Bcl-xL, and Bcl-w but only weakly to A1 and not to Mcl-1. Strikingly, Noxa bound only Mcl-1 and A1. In accord with their complementary binding, Bad and Noxa cooperated to induce potent killing. The results suggest that apoptosis relies on selective interactions between particular subsets of these proteins and that it should be feasible to discover BH3-mimetic drugs that inactivate specific prosurvival targets.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Bcl-2 family proteins and cancer.

              K. Yip, J Reed (2008)
              BCL-2 was the first anti-death gene discovered, a milestone with far reaching implications for tumor biology. Multiple members of the human Bcl-2 family of apoptosis-regulating proteins have been identified, including six antiapoptotic, three structurally similar proapoptotic proteins and several structurally diverse proapoptotic interacting proteins that operate as upstream agonists or antagonists. These proteins, in turn, are regulated through myriad post-translational modifications and interactions with other proteins. Bcl-2-family proteins regulate all major types of cell death, including apoptosis, necrosis and autophagy, thus operating as nodal points at the convergence of multiple pathways with broad relevance to oncology. Experimental therapies targeting Bcl-2-family mRNAs or proteins are currently in clinical testing, raising hopes that a new class of anticancer drugs may soon be available.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2012
                15 May 2012
                : 7
                : 5
                : e36490
                Affiliations
                [1]Department of Oncology-Pathology, Cancer Center Karolinska (CCK), Karolinska Institutet, Stockholm, Sweden
                The Chinese University of Hong Kong, Hong Kong
                Author notes

                Conceived and designed the experiments: ML M. Haneklaus DG. Performed the experiments: ML M. Haneklaus M. Harada. Analyzed the data: ML M. Haneklaus M. Harada DG. Contributed reagents/materials/analysis tools: ML M. Haneklaus DG. Wrote the paper: ML M. Haneklaus DG. Obtained permission for use of cell line HCT116DICER-/-: ML.

                Article
                PONE-D-11-11709
                10.1371/journal.pone.0036490
                3352905
                22615771
                b7ec497f-a8c4-45fc-a487-4d4e837c2374
                Lerner et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 27 June 2011
                : 9 April 2012
                Page count
                Pages: 12
                Categories
                Research Article
                Biology
                Genetics
                Epigenetics
                Molecular Cell Biology
                Gene Expression
                RNA stability
                Nucleic Acids
                RNA
                Cell Death
                Medicine
                Oncology
                Cancer Treatment
                Chemotherapy and Drug Treatment
                Basic Cancer Research
                Oncology Agents

                Uncategorized
                Uncategorized

                Comments

                Comment on this article