7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Straintronics beyond homogeneous deformation

      Preprint
      , , , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We present a continuum theory of graphene treating on an equal footing both homogeneous Cauchy-Born (CB) deformation, as well as the microscopic degrees of freedom associated with the two sublattices. While our theory recovers all extant results from homogeneous continuum theory, the Dirac-Weyl equation is found to be augmented by new pseudo-gauge and chiral fields fundamentally different from those that result from homogeneous deformation. We elucidate three striking electronic consequences: (i) non-CB deformations allow for the transport of valley polarized charge over arbitrarily long distances e.g. along a designed ridge; (ii) the triaxial deformations required to generate an approximately uniform magnetic field are unnecessary with non-CB deformation; and finally (iii) the vanishing of the effects of a one dimensional corrugation seen in \emph{ab-initio} calculation upon lattice relaxation are explained as a compensation of CB and non-CB deformation.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          Designer Dirac fermions and topological phases in molecular graphene.

          The observation of massless Dirac fermions in monolayer graphene has generated a new area of science and technology seeking to harness charge carriers that behave relativistically within solid-state materials. Both massless and massive Dirac fermions have been studied and proposed in a growing class of Dirac materials that includes bilayer graphene, surface states of topological insulators and iron-based high-temperature superconductors. Because the accessibility of this physics is predicated on the synthesis of new materials, the quest for Dirac quasi-particles has expanded to artificial systems such as lattices comprising ultracold atoms. Here we report the emergence of Dirac fermions in a fully tunable condensed-matter system-molecular graphene-assembled by atomic manipulation of carbon monoxide molecules over a conventional two-dimensional electron system at a copper surface. Using low-temperature scanning tunnelling microscopy and spectroscopy, we embed the symmetries underlying the two-dimensional Dirac equation into electron lattices, and then visualize and shape the resulting ground states. These experiments show the existence within the system of linearly dispersing, massless quasi-particles accompanied by a density of states characteristic of graphene. We then tune the quantum tunnelling between lattice sites locally to adjust the phase accrual of propagating electrons. Spatial texturing of lattice distortions produces atomically sharp p-n and p-n-p junction devices with two-dimensional control of Dirac fermion density and the power to endow Dirac particles with mass. Moreover, we apply scalar and vector potentials locally and globally to engender topologically distinct ground states and, ultimately, embedded gauge fields, wherein Dirac electrons react to 'pseudo' electric and magnetic fields present in their reference frame but absent from the laboratory frame. We demonstrate that Landau levels created by these gauge fields can be taken to the relativistic magnetic quantum limit, which has so far been inaccessible in natural graphene. Molecular graphene provides a versatile means of synthesizing exotic topological electronic phases in condensed matter using tailored nanostructures. © 2012 Macmillan Publishers Limited. All rights reserved
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Midgap states and charge inhomogeneities in corrugated graphene

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Symmetry-based approach to electron-phonon interactions in graphene

              J. Manes (2007)
                Bookmark

                Author and article information

                Journal
                10 October 2018
                Article
                1810.04775
                b80bb6d3-1ec7-4849-8799-55fd79292407

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                cond-mat.mes-hall

                Nanophysics
                Nanophysics

                Comments

                Comment on this article