5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Reduced and All-at-Once Approaches for Model Calibration and Discovery in Computational Solid Mechanics

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In the framework of solid mechanics, the task of deriving material parameters from experimental data has recently re-emerged with the progress in full-field measurement capabilities and the renewed advances of machine learning. In this context, new methods such as the virtual fields method and physics-informed neural networks have been developed as alternatives to the already established least-squares and finite element-based approaches. Moreover, model discovery problems are starting to emerge and can also be addressed in a parameter estimation framework. These developments call for a new unified perspective, which is able to cover both traditional parameter estimation methods and novel approaches in which the state variables or the model structure itself are inferred as well. Adopting concepts discussed in the inverse problems community, we distinguish between all-at-once and reduced approaches. With this general framework, we are able to structure a large portion of the literature on parameter estimation in computational mechanics - and we can identify combinations that have not yet been addressed, two of which are proposed in this paper. We also discuss statistical approaches to quantify the uncertainty related to the estimated parameters, and we propose a novel two-step procedure for identification of complex material models based on both frequentist and Bayesian principles. Finally, we illustrate and compare several of the aforementioned methods with mechanical benchmarks based on synthetic and real data.

          Related collections

          Author and article information

          Journal
          25 April 2024
          Article
          2404.16980
          b85d9cd4-42a1-4f7d-8e10-84b66cb31052

          http://arxiv.org/licenses/nonexclusive-distrib/1.0/

          History
          Custom metadata
          cs.CE

          Applied computer science
          Applied computer science

          Comments

          Comment on this article