9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Novel C3N4–CdS composite photocatalysts with organic–inorganic heterojunctions: in situ synthesis, exceptional activity, high stability and photocatalytic mechanism

      , , , ,
      Journal of Materials Chemistry A
      Royal Society of Chemistry (RSC)

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Photodegradation performance of g-C3N4 fabricated by directly heating melamine.

          The g-C(3)N(4) photocatalyst was synthesized by directly heating the low-cost melamine. The methyl orange dye (MO) was selected as a photodegrading goal to evaluate the photocatalytic activity of as-prepared g-C(3)N(4). The comparison experiments indicate that the photocatalytic activity of g-C(3)N(4) can be largely improved by the Ag loading. The strong acid radical ion (SO(4)(2-) or NO(3)(-)) can promote the degrading rate of MO for g-C(3)N(4) photocatalysis system. The MO degradation over the g-C(3)N(4) is mainly attributed to the photoreduction process induced by the photogenerated electrons. Our results clearly indicate that the metal-free g-C(3)N(4) has good performance in photodegradation of organic pollutant.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Phosphorus-doped carbon nitride solid: enhanced electrical conductivity and photocurrent generation.

            As a new kind of polymeric semiconductors, graphitic carbon nitride (g-C(3)N(4)) and its incompletely condensed precursors are stable up to 550 degrees C in air and have shown promising photovoltaic applications. However, for practical applications, their efficiency, limited e.g. by band gap absorption, needs further improvement. Here we report a "structural doping" strategy, in which phosphorus heteroatoms were doped into g-C(3)N(4) via carbon sites by polycondensation of the mixture of the carbon nitride precursors and phosphorus source (specifically from 1-butyl-3-methylimidazolium hexafluorophosphate ionic liquid). Most of the structural features of g-C(3)N(4) were well retained after doping, but electronic features had been seriously altered, which provided not only a much better electrical (dark) conductivity up to 4 orders of magnitude but also an improvement in photocurrent generation by a factor of up to 5. In addition to being active layers in solar cells, such phosphorus-containing scaffolds and materials are also interesting for polymeric batteries as well as for catalysis and as catalytic supports.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Metal-Containing Carbon Nitride Compounds: A New Functional Organic-Metal Hybrid Material

                Bookmark

                Author and article information

                Journal
                JMCAET
                Journal of Materials Chemistry A
                J. Mater. Chem. A
                Royal Society of Chemistry (RSC)
                2050-7488
                2050-7496
                2013
                2013
                : 1
                : 9
                : 3083
                Article
                10.1039/c2ta00672c
                b85faf90-b4bb-4724-a17b-e8fce94862ce
                © 2013
                History

                Comments

                Comment on this article