3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Poly(ADP-ribose) Polymerase (PARP) and PARP Inhibitors: Mechanisms of Action and Role in Cardiovascular Disorders

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references88

          • Record: found
          • Abstract: found
          • Article: not found

          Poly(ADP-ribosyl)ation reactions in the regulation of nuclear functions.

          Poly(ADP-ribosyl)ation is a post-translational modification of proteins. During this process, molecules of ADP-ribose are added successively on to acceptor proteins to form branched polymers. This modification is transient but very extensive in vivo, as polymer chains can reach more than 200 units on protein acceptors. The existence of the poly(ADP-ribose) polymer was first reported nearly 40 years ago. Since then, the importance of poly(ADP-ribose) synthesis has been established in many cellular processes. However, a clear and unified picture of the physiological role of poly(ADP-ribosyl)ation still remains to be established. The total dependence of poly(ADP-ribose) synthesis on DNA strand breaks strongly suggests that this post-translational modification is involved in the metabolism of nucleic acids. This view is also supported by the identification of direct protein-protein interactions involving poly(ADP-ribose) polymerase (113 kDa PARP), an enzyme catalysing the formation of poly(ADP-ribose), and key effectors of DNA repair, replication and transcription reactions. The presence of PARP in these multiprotein complexes, in addition to the actual poly(ADP-ribosyl)ation of some components of these complexes, clearly supports an important role for poly(ADP-ribosyl)ation reactions in DNA transactions. Accordingly, inhibition of poly(ADP-ribose) synthesis by any of several approaches and the analysis of PARP-deficient cells has revealed that the absence of poly(ADP-ribosyl)ation strongly affects DNA metabolism, most notably DNA repair. The recent identification of new poly(ADP-ribosyl)ating enzymes with distinct (non-standard) structures in eukaryotes and archaea has revealed a novel level of complexity in the regulation of poly(ADP-ribose) metabolism.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Antagonistic crosstalk between NF-κB and SIRT1 in the regulation of inflammation and metabolic disorders.

            Recent studies have indicated that the regulation of innate immunity and energy metabolism are connected together through an antagonistic crosstalk between NF-κB and SIRT1 signaling pathways. NF-κB signaling has a major role in innate immunity defense while SIRT1 regulates the oxidative respiration and cellular survival. However, NF-κB signaling can stimulate glycolytic energy flux during acute inflammation, whereas SIRT1 activation inhibits NF-κB signaling and enhances oxidative metabolism and the resolution of inflammation. SIRT1 inhibits NF-κB signaling directly by deacetylating the p65 subunit of NF-κB complex. SIRT1 stimulates oxidative energy production via the activation of AMPK, PPARα and PGC-1α and simultaneously, these factors inhibit NF-κB signaling and suppress inflammation. On the other hand, NF-κB signaling down-regulates SIRT1 activity through the expression of miR-34a, IFNγ, and reactive oxygen species. The inhibition of SIRT1 disrupts oxidative energy metabolism and stimulates the NF-κB-induced inflammatory responses present in many chronic metabolic and age-related diseases. We will examine the molecular mechanisms of the antagonistic signaling between NF-κB and SIRT1 and describe how this crosstalk controls inflammatory process and energy metabolism. In addition, we will discuss how disturbances in this signaling crosstalk induce the appearance of chronic inflammation in metabolic diseases. Copyright © 2013 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mediation of poly(ADP-ribose) polymerase-1-dependent cell death by apoptosis-inducing factor.

              Poly(ADP-ribose) polymerase-1 (PARP-1) protects the genome by functioning in the DNA damage surveillance network. PARP-1 is also a mediator of cell death after ischemia-reperfusion injury, glutamate excitotoxicity, and various inflammatory processes. We show that PARP-1 activation is required for translocation of apoptosis-inducing factor (AIF) from the mitochondria to the nucleus and that AIF is necessary for PARP-1-dependent cell death. N-methyl-N'-nitro-N-nitrosoguanidine, H2O2, and N-methyl-d-aspartate induce AIF translocation and cell death, which is prevented by PARP inhibitors or genetic knockout of PARP-1, but is caspase independent. Microinjection of an antibody to AIF protects against PARP-1-dependent cytotoxicity. These data support a model in which PARP-1 activation signals AIF release from mitochondria, resulting in a caspase-independent pathway of programmed cell death.
                Bookmark

                Author and article information

                Journal
                Cardiovascular Toxicology
                Cardiovasc Toxicol
                Springer Science and Business Media LLC
                1530-7905
                1559-0259
                December 2018
                July 2 2018
                December 2018
                : 18
                : 6
                : 493-506
                Article
                10.1007/s12012-018-9462-2
                29968072
                b8765394-4672-47c4-8174-ca8aa4883b74
                © 2018

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article