3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Brain Oxytocin Inhibits Basal and Stress-Induced Activity of the Hypothalamo-Pituitary-Adrenal Axis in Male and Female Rats: Partial Action Within the Paraventricular Nucleus : Effect of brain oxytocin on HPA axis of rats

      , , , ,
      Journal of Neuroendocrinology
      Wiley

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references64

          • Record: found
          • Abstract: found
          • Article: not found

          Two receptor systems for corticosterone in rat brain: microdistribution and differential occupation.

          Two receptor systems for corticosterone (CORT) can be distinguished in rat brain: mineralocorticoid-like or CORT receptors (CR) and glucocorticoid receptors (GR). The microdistribution and extent of occupation of each receptor population by CORT were studied. The CR system is restricted predominantly to the lateral septum and hippocampus. Within the hippocampus, the highest density occurs in the subiculum +/- CA1 cell field (144 fmol/mg protein) and the dentate gyrus (104 fmol/mg protein). Affinity of CR for CORT was very high (Kd, approximately 0.5 nM). The GR system has a more widespread distribution in the brain. The highest density for GR is in the lateral septum (195 fmol/mg protein), the dentate gyrus (133 fmol/mg protein), the nucleus tractus solitarii and central amygdala. Substantial amounts of GR are present in the paraventricular nucleus and locus coeruleus and low amounts in the raphe area and the subiculum + CA1 cell field. The affinity of GR for CORT (Kd, approximately 2.5-5 nM) was 6- to 10-fold lower than that of CR. Occupation of CR by endogenous ligand was 89.5% during morning trough levels of pituitary-adrenal activity (plasma CORT, 1.4 micrograms/100 ml). Similar levels of occupation (88.7% and 97.6%) were observed at the diurnal peak (plasma CORT, 27 micrograms/100 ml) and after 1 h of restraint stress (plasma CORT, 25 micrograms/100 ml), respectively. Furthermore, a dose of 1 microgram CORT/100 g BW, sc, resulted in 80% CORT receptor occupation, whereas GR were not occupied. For 50% occupation of GR, doses needed to be increased to 50-100 micrograms/100 g BW, and for 95% occupation, a dose of 1 mg CORT was required. The plasma CORT level at the time of half-maximal GR occupation was about 25 micrograms/100 ml, which is in the range of levels attained after stress or during the diurnal peak of pituitary-adrenal activity. Thus, CR are extensively filled (greater than 90%) with endogenous CORT under most circumstances, while GR become occupied concurrent with increasing plasma CORT concentrations due to stress or diurnal rhythm. We conclude that CORT action via CR may be involved in a tonic (permissive) influence on brain function with the septohippocampal complex as a primary target. In view of the almost complete occupation of CR by endogenous hormones, the regulation of the CORT signal via CR will, most likely, be by alterations in the number of such receptors. In contrast, CORT action via GR is involved in its feedback action on stress-activated brain mechanisms, and GR occur widely in the brain.(ABSTRACT TRUNCATED AT 400 WORDS)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Central oxytocin administration reduces stress-induced corticosterone release and anxiety behavior in rats.

            Endocrine responses to noise stress and anxiety-related behaviors were measured in groups of ovariectomized, estradiol-treated female rats given central infusions of oxytocin. Control animals receiving isotonic saline showed a large increase in plasma corticosterone concentrations in response to 10 min of white noise. This response to noise stress was significantly and dose dependently decreased by oxytocin administered intracerebroventricularly at 10 or 100 ng/h for 5 days. Oxytocin also significantly decreased rearing behavior during this stress. When a second noise stress was given 3 days after cessation of oxytocin infusion, corticosterone responses did not differ between the control and previously oxytocin-infused animals. Administration of vasopressin had no significant effect on either the corticosterone or behavioral responses to noise stress. Anxiety-related behaviors were measured on the elevated plus-maze. No significant differences were seen in maze exploration between saline- and oxytocin-treated animals when housed and tested in the same environment. However, when animals were mildly stressed by testing in an unfamiliar environment, oxytocin-treated animals showed a higher proportion of open arm entries and spent significantly more time in the open arms of the maze. Thus, oxytocin exerts a central anxiolytic-like effect on both endocrine and behavioral systems and could play a role in moderating behavioral and physiological responses to stress.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Variations in the hypothalamic-pituitary-adrenal response to stress during the estrous cycle in the rat.

              To investigate the role of gonadal steroids in the hypothalamic-pituitary-adrenal (HPA) response to stress, we studied adrenocorticotrophin (ACTH) and corticosterone (B) responses to 20-min restraint stress in cycling female rats, and in ovariectomized (OVX) rats replaced with physiological levels of estradiol (E2) and progesterone (P). In cycling rats, we found significantly higher peak ACTH (P less than 0.01) and B (P less than 0.05) responses to stress during proestrus compared to the estrous and diestrous phases. No differences were found in either basal ACTH and B levels across the cycle phases. In a separate study, OVX rats were maintained on low, physiological levels of E2 and P with silastic implants for 3 days, and injected either with oil (O'), 10 micrograms of E2 (E') 24 h before stress testing, or with E2 and 500 micrograms P 24 and 4 h, respectively, prior to stress (EP'). These treatments mimicked endogenous profiles of E2 and P occurring during diestrous, proestrous, and late proestrous-early estrous phases, respectively. In response to stress, ACTH levels were higher (P less than 0.01) in the E' group compared to the EP' and O' groups. Although the peak B response was similar in all groups, the E' and EP' groups secreted more B after the termination of stress than did the O' group. Within the 20 min stress period, ACTH levels in the E' group were significantly (P less than 0.05) higher at 5, 10, and 15 min after the onset of stress, compared to the EP' and O' groups. Plasma B levels were significantly higher in the E' group at 5 and 10 min (P less than 0.05 and P less than 0.01, respectively) compared to the EP' and O' group. beta-endorphin-like immunoreactive responses to restraint stress were also significantly higher in the E' group compared to the EP' (P less than 0.05) and O' (P less than 0.01) groups. In contrast to the effect seen at 24 h, ACTH responses to stress 48 h after E2 injection in the E' group were comparable to O' animals. There was no effect of E2 on ACTH clearance, whereas B clearance was enhanced in E' treated animals vs. O'-treated animals. These results indicate that the HPA axis in the female rat is most sensitive to stress during proestrous. Such enhanced HPA responses to stress are limited to the early portion of proestrous, as progesterone appears to inhibit the facilitatory effects of estrogen on ACTH release during stress. Taken together, these results suggest an ovarian influence on both activational and inhibitory components of HPA activity.
                Bookmark

                Author and article information

                Journal
                Journal of Neuroendocrinology
                Journal of Neuroendocrinology
                Wiley
                09538194
                13652826
                March 2000
                December 24 2001
                : 12
                : 3
                : 235-243
                Article
                10.1046/j.1365-2826.2000.00442.x
                b974ba0d-b766-4cc3-ad72-10196038c4a5
                © 2001

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article