45
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      MicroRNA-146a-mediated downregulation of IRAK1 protects mouse and human small intestine against ischemia/reperfusion injury

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Intestinal ischemia/reperfusion (I/R) injury causes inflammation and tissue damage and is associated with high morbidity and mortality. Uncontrolled activation of the innate immune system through toll-like receptors (Tlr) plays a key role in I/R-mediated tissue damage but the underlying mechanisms have not been fully resolved. Here, we identify post-transcriptional upregulation of the essential Tlr signalling molecule interleukin 1 receptor-associated kinase (Irak) 1 as the causative mechanism for post-ischemic immune hyper-responsiveness of intestinal epithelial cells. Increased Irak1 protein levels enhanced epithelial ligand responsiveness, chemokine secretion, apoptosis and mucosal barrier disruption in an experimental intestinal I/R model using wild-type, Irak1 −/− and Tlr4 −/− mice and ischemic human intestinal tissue. Irak1 accumulation under hypoxic conditions was associated with reduced K48 ubiquitination and enhanced Senp1-mediated deSUMOylation of Irak1. Importantly, administration of microRNA (miR)-146a or induction of miR-146a by the phytochemical diindolylmethane controlled Irak1 upregulation and prevented immune hyper-responsiveness in mouse and human tissue. These findings indicate that Irak1 accumulation triggers I/R-induced epithelial immune hyper-responsiveness and suggest that the induction of miR-146a offers a promising strategy to prevent I/R tissue injury.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          Origins and Mechanisms of miRNAs and siRNAs.

          Over the last decade, approximately 20-30 nucleotide RNA molecules have emerged as critical regulators in the expression and function of eukaryotic genomes. Two primary categories of these small RNAs--short interfering RNAs (siRNAs) and microRNAs (miRNAs)--act in both somatic and germline lineages in a broad range of eukaryotic species to regulate endogenous genes and to defend the genome from invasive nucleic acids. Recent advances have revealed unexpected diversity in their biogenesis pathways and the regulatory mechanisms that they access. Our understanding of siRNA- and miRNA-based regulation has direct implications for fundamental biology as well as disease etiology and treatment.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis.

            Toll-like receptors (TLRs) play a crucial role in host defense against microbial infection. The microbial ligands recognized by TLRs are not unique to pathogens, however, and are produced by both pathogenic and commensal microorganisms. It is thought that an inflammatory response to commensal bacteria is avoided due to sequestration of microflora by surface epithelia. Here, we show that commensal bacteria are recognized by TLRs under normal steady-state conditions, and this interaction plays a crucial role in the maintenance of intestinal epithelial homeostasis. Furthermore, we find that activation of TLRs by commensal microflora is critical for the protection against gut injury and associated mortality. These findings reveal a novel function of TLRs-control of intestinal epithelial homeostasis and protection from injury-and provide a new perspective on the evolution of host-microbial interactions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              TLR4 activation mediates kidney ischemia/reperfusion injury.

              Ischemia/reperfusion injury (IRI) may activate innate immunity through the engagement of TLRs by endogenous ligands. TLR4 expressed within the kidney is a potential mediator of innate activation and inflammation. Using a mouse model of kidney IRI, we demonstrated a significant increase in TLR4 expression by tubular epithelial cells (TECs) and infiltrating leukocytes within the kidney following ischemia. TLR4 signaling through the MyD88-dependent pathway was required for the full development of kidney IRI, as both TLR4(-/-) and MyD88(-/-) mice were protected against kidney dysfunction, tubular damage, neutrophil and macrophage accumulation, and expression of proinflammatory cytokines and chemokines. In vitro, WT kidney TECs produced proinflammatory cytokines and chemokines and underwent apoptosis after ischemia. These effects were attenuated in TLR4(-/-) and MyD88(-/-) TECs. In addition, we demonstrated upregulation of the endogenous ligands high-mobility group box 1 (HMGB1), hyaluronan, and biglycan, providing circumstantial evidence that one or more of these ligands may be the source of TLR4 activation. To determine the relative contribution of TLR4 expression by parenchymal cells or leukocytes to kidney damage during IRI, we generated chimeric mice. TLR4(-/-) mice engrafted with WT hematopoietic cells had significantly lower serum creatinine and less tubular damage than WT mice reconstituted with TLR4(-/-) BM, suggesting that TLR4 signaling in intrinsic kidney cells plays the dominant role in mediating kidney damage.
                Bookmark

                Author and article information

                Journal
                EMBO Mol Med
                EMBO Mol Med
                emmm
                EMBO Molecular Medicine
                WILEY-VCH Verlag (Weinheim )
                1757-4676
                1757-4684
                December 2012
                09 November 2012
                : 4
                : 12
                : 1308-1319
                Affiliations
                [1 ]Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School Hannover, Germany
                [2 ]Department of Pediatric Surgery, Hannover Medical School Hannover, Germany
                [3 ]Department of Gastroenterology and Hepatology, Hannover Medical School Hannover, Germany
                [4 ]INSERM U773, Centre de Recherche Biomédicale Bichat-Beaujon (CRB3), Université Paris 7-Denis Diderot Paris, France
                Author notes
                *Corresponding author: Tel: +33 1 57 27 75 48; Fax: +33 1 57 27 76 61; E-mail: cecilia.chassin@ 123456gmail.com
                **Corresponding author: Tel: +49 511 532 4540; Fax: +49 511 532 4366; E-mail: hornef.mathias@ 123456mh-hannover.de
                [*]

                Present address: ATIP-Avenir Group, INSERM U699, Faculté de Médecine Xavier Bichat, Université Paris 7, Paris, France

                [**]

                Present address: University of Veterinary Medicine Vienna, Institute of Animal Breeding and Genetics, Vienna, Austria

                [#]

                Present address: Klinikum Region Hannover Robert Koch, Gehrden, Germany

                Article
                10.1002/emmm.201201298
                3531605
                23143987
                ba084fef-dc02-457d-9de6-fcea25874f2f
                Copyright © 2012 The Authors. Published by John Wiley and Sons, Ltd on behalf of EMBO

                Re-use of this article is permitted in accordance with the Creative Commons Deed, Attribution 2.5, which does not permit commercial exploitation.

                History
                : 16 February 2012
                : 21 September 2012
                : 25 September 2012
                Categories
                Research Articles

                Molecular medicine
                inflammation,intestine,irak1,ischemia–reperfusion,microrna
                Molecular medicine
                inflammation, intestine, irak1, ischemia–reperfusion, microrna

                Comments

                Comment on this article