49
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Current and emerging treatments for the management of osteogenesis imperfecta

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Osteogenesis imperfecta (OI) is the most common bone genetic disorder and it is characterized by bone brittleness and various degrees of growth disorder. Clinical severity varies widely; nowadays eight types are distinguished and two new forms have been recently described although not yet classified. The approach to such a variable and heterogeneous disease should be global and therefore multidisciplinary. For simplicity, the objectives of treatment can be reduced to three typical situations: the lethal perinatal form (type II), in which the problem is survival at birth; the severe and moderate forms (types III–IX), in which the objective is ‘autonomy’; and the mild form (type I), in which the aim is to reach ‘normal life’. Three types of treatment are available: non-surgical management (physical therapy, rehabilitation, bracing and splinting), surgical management (intramedullary rod positioning, spinal and basilar impression surgery) and medical-pharmacological management (drugs to increase the strength of bone and decrease the number of fractures as bisphosphonates or growth hormone, depending on the type of OI). Suggestions and guidelines for a therapeutic approach are indicated and updated with the most recent findings in OI diagnosis and treatment.

          Most cited references136

          • Record: found
          • Abstract: found
          • Article: not found

          Effect of parathyroid hormone (1-34) on fractures and bone mineral density in postmenopausal women with osteoporosis.

          Once-daily injections of parathyroid hormone or its amino-terminal fragments increase bone formation and bone mass without causing hypercalcemia, but their effects on fractures are unknown. We randomly assigned 1637 postmenopausal women with prior vertebral fractures to receive 20 or 40 microg of parathyroid hormone (1-34) or placebo, administered subcutaneously by the women daily. We obtained vertebral radiographs at base line and at the end of the study (median duration of observation, 21 months) and performed serial measurements of bone mass by dual-energy x-ray absorptiometry. New vertebral fractures occurred in 14 percent of the women in the placebo group and in 5 percent and 4 percent, respectively, of the women in the 20-microg and 40-microg parathyroid hormone groups; the respective relative risks of fracture in the 20-microg and 40-microg groups, as compared with the placebo group, were 0.35 and 0.31 (95 percent confidence intervals, 0.22 to 0.55 and 0.19 to 0.50). New nonvertebral fragility fractures occurred in 6 percent of the women in the placebo group and in 3 percent of those in each parathyroid hormone group (relative risk, 0.47 and 0.46, respectively [95 percent confidence intervals, 0.25 to 0.88 and 0.25 to 0.861). As compared with placebo, the 20-microg and 40-microg doses of parathyroid hormone increased bone mineral density by 9 and 13 more percentage points in the lumbar spine and by 3 and 6 more percentage points in the femoral neck; the 40-microg dose decreased bone mineral density at the shaft of the radius by 2 more percentage points. Both doses increased total-body bone mineral by 2 to 4 more percentage points than did placebo. Parathyroid hormone had only minor side effects (occasional nausea and headache). Treatment of postmenopausal osteoporosis with parathyroid hormone (1-34) decreases the risk of vertebral and nonvertebral fractures; increases vertebral, femoral, and total-body bone mineral density; and is well tolerated. The 40-microg dose increased bone mineral density more than the 20-microg dose but had similar effects on the risk of fracture and was more likely to have side effects.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Genetic heterogeneity in osteogenesis imperfecta.

            An epidemiological and genetical study of osteogenesis imperfecta (OI) in Victoria, Australia confirmed that there are at least four distinct syndromes at present called OI. The largest group of patients showed autosomal dominant inheritance of osteoporosis leading to fractures and distinctly blue sclerae. A large proportion of adults had presenile deafness or a family history of presenile conductive hearing loss. A second group, who comprised the majority of newborns with neonatal fractures, all died before or soon after birth. These had characteristic broad, crumpled femora and beaded ribs in skeletal x-rays. Autosomal recessive inheritance was likely for some, if not all, of these cases. A third group, two thirds of whom had fractures at birth, showed severe progressive deformity of limbs and spine. The density of scleral blueness appeared less than that seen in the first group of patients and approximated that seen in normal children and adults. Moreover, the blueness appeared to decrease with age. All patients in this group were sporadic cases. The mode of inheritance was not resolved by the study, but it is likely that the group is heterogeneous with both dominant and recessive genotypes responsible for the syndrome. The fourth group of patients showed dominant inheritance of osteoporosis leading to fractures, with variable deformity of long bones, but normal sclerae.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: Implications for cell therapy of bone.

              Treatment with isolated allogeneic mesenchymal cells has the potential to enhance the therapeutic effects of conventional bone marrow transplantation in patients with genetic disorders affecting mesenchymal tissues, including bone, cartilage, and muscle. To demonstrate the feasibility of mesenchymal cell therapy and to gain insight into the transplant biology of these cells, we used gene-marked, donor marrow-derived mesenchymal cells to treat six children who had undergone standard bone marrow transplantation for severe osteogenesis imperfecta. Each child received two infusions of the allogeneic cells. Five of six patients showed engraftment in one or more sites, including bone, skin, and marrow stroma, and had an acceleration of growth velocity during the first 6 mo postinfusion. This improvement ranged from 60% to 94% (median, 70%) of the predicted median values for age- and sex-matched unaffected children, compared with 0% to 40% (median, 20%) over the 6 mo immediately preceding the infusions. There was no clinically significant toxicity except for an urticarial rash in one patient just after the second infusion. Failure to detect engraftment of cells expressing the neomycin phosphotransferase marker gene suggested the potential for immune attack against therapeutic cells expressing a foreign protein. Thus, allogeneic mesenchymal cells offer feasible posttransplantation therapy for osteogenesis imperfecta and likely other disorders originating in mesenchymal precursors.
                Bookmark

                Author and article information

                Journal
                Ther Clin Risk Manag
                Therapeutics and Clinical Risk Management
                Therapeutics and Clinical Risk Management
                Dove Medical Press
                1176-6336
                1178-203X
                2010
                2010
                7 September 2010
                : 6
                : 367-381
                Affiliations
                [1 ]Department of Life Sciences and Reproduction, Pediatric Clinic University of Verona, Verona, Italy;
                [2 ]Istituto Di Ricovero e Cura a Carattere Scientifico, ‘E. Medea’, Associazione La Nostra Famiglia, Bosisio Parini (LC), Italy;
                [3 ]Divisione di Ortopedia Pediatrica, Spedali Civili, Brescia, Italy;
                [4 ]Department of Biochemistry “A. Castellani”, University of Pavia, Italy
                Author notes
                Correspondence: Franco Antoniazzi, Department of Life Sciences and Reproduction, Pediatric Clinic, University of Verona, Policlinico Giambattista Rossi, Piazza Ludovico Antonio Scuro, 10, I-37134 Verona, Italy, Tel +39 045 8124387, Fax +39 045 8124790, Email franco.antoniazzi@ 123456univr.it
                Article
                tcrm-6-367
                10.2147/tcrm.s5932
                2940745
                20856683
                ba27c897-0c98-4606-bdc4-aa89facf788f
                © 2010 Monti et al, publisher and licensee Dove Medical Press Ltd.

                This is an Open Access article which permits unrestricted noncommercial use, provided the original work is properly cited.

                History
                : 21 August 2010
                Categories
                Review

                Medicine
                osteogenesis imperfecta,bone genetic disorder,bone brittleness,“brittle bone disease”,connective tissue malfunction,short stature,progressive skeletal deformities,blue sclerae,dentinogenesis imperfecta,joint laxity,adult onset deafness

                Comments

                Comment on this article