59
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Physical developmental cues for the maturation of human pluripotent stem cell-derived cardiomyocytes

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) are the most promising source of cardiomyocytes (CMs) for experimental and clinical applications, but their use is largely limited by a structurally and functionally immature phenotype that most closely resembles embryonic or fetal heart cells. The application of physical stimuli to influence hPSC-CMs through mechanical and bioelectrical transduction offers a powerful strategy for promoting more developmentally mature CMs. Here we summarize the major events associated with in vivo heart maturation and structural development. We then review the developmental state of in vitro derived hPSC-CMs, while focusing on physical (electrical and mechanical) stimuli and contributory (metabolic and hypertrophic) factors that are actively involved in structural and functional adaptations of hPSC-CMs. Finally, we highlight areas for possible future investigation that should provide a better understanding of how physical stimuli may promote in vitro development and lead to mechanistic insights. Advances in the use of physical stimuli to promote developmental maturation will be required to overcome current limitations and significantly advance research of hPSC-CMs for cardiac disease modeling, in vitro drug screening, cardiotoxicity analysis and therapeutic applications.

          Related collections

          Most cited references97

          • Record: found
          • Abstract: found
          • Article: not found

          Metabolic plasticity in stem cell homeostasis and differentiation.

          Plasticity in energy metabolism allows stem cells to match the divergent demands of self-renewal and lineage specification. Beyond a role in energetic support, new evidence implicates nutrient-responsive metabolites as mediators of crosstalk between metabolic flux, cellular signaling, and epigenetic regulation of cell fate. Stem cell metabolism also offers a potential target for controlling tissue homeostasis and regeneration in aging and disease. In this Perspective, we cover recent progress establishing an emerging relationship between stem cell metabolism and cell fate control. Copyright © 2012 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Energy metabolic phenotype of the cardiomyocyte during development, differentiation, and postnatal maturation.

            Dramatic maturational changes occur in cardiac energy metabolism during cardiac development, differentiation, and postnatal growth. These changes in energy metabolism have important impacts on the ability of the cardiomyocyte to proliferate during early cardiac development, as well as when cardiomyocytes terminally differentiate during later development. During early cardiac development, glycolysis is a major source of energy for proliferating cardiomyocytes. As cardiomyocytes mature and become terminally differentiated, mitochondrial oxidative capacity increases, with fatty acid beta-oxidation becoming a major source of energy for the heart. The increase in mitochondrial oxidative capacity seems to coincide with a decrease in the proliferative ability of the cardiomyocyte. The switch from glycolysis to mitochondrial oxidative metabolism during cardiac development includes both alterations in the transcriptional control and acute alterations in the control of each pathway. Interestingly, if a hypertrophic stress is placed on the adult heart, cardiac energy metabolism switches to a more fetal phenotype, which includes an increase in glycolysis and decrease in mitochondrial fatty acid beta-oxidation. In this article, we review the impact of alterations in energy substrate metabolism on cardiomyocyte proliferation, differentiation, and postnatal maturation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mechanotransduction in development: a growing role for contractility.

              Mechanotransduction research has focused historically on how externally applied forces can affect cell signalling and function. A growing body of evidence suggests that contractile forces that are generated internally by the actomyosin cytoskeleton are also important in regulating cell behaviour, and suggest a broader role for mechanotransduction in biology. Although the molecular basis for these cellular forces in mechanotransduction is being pursued in cell culture, researchers are also beginning to appreciate their contribution to in vivo developmental processes. Here, we examine the role for mechanical forces and contractility in regulating cell and tissue structure and function during development.
                Bookmark

                Author and article information

                Contributors
                zrj868@gmail.com
                ablazes1@jhmi.edu
                ellpoon@hku.hk
                kdcosta66@gmail.com
                ltung@jhu.edu
                bohelerk@hku.hk
                Journal
                Stem Cell Res Ther
                Stem Cell Res Ther
                Stem Cell Research & Therapy
                BioMed Central (London )
                1757-6512
                20 October 2014
                20 October 2014
                2014
                : 5
                : 5
                : 117
                Affiliations
                [ ]Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
                [ ]Stem Cell and Regenerative Medicine Consortium, University of Hong Kong, Hong Kong, SAR China
                [ ]Icahn School of Medicine at Mount Sinai, Cardiovascular Research Center, New York, NY 10029 USA
                [ ]Division of Cardiology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
                Article
                397
                10.1186/scrt507
                4396914
                25688759
                ba807d4a-56ed-434e-bb43-de43e92fb5e1
                © Zhu et al.; licensee BioMed Central Ltd. 2014

                This article is published under license to BioMed Central Ltd. The licensee has exclusive rights to distribute this article, in any medium, for 12 months following its publication. After this time, the article is available under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                Categories
                Review
                Custom metadata
                © The Author(s) 2014

                Molecular medicine
                Molecular medicine

                Comments

                Comment on this article