14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Beyond Antigenic Match: Possible Agent-Host and Immuno-epidemiological Influences on Influenza Vaccine Effectiveness During the 2015–2016 Season in Canada

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Vaccine effectiveness estimates for 2015–2016 seasonal influenza vaccine are reported from Canada. Findings suggest that agent-host and immuno-epidemiologic factors beyond antigenic match—including viral genomic variation, birth (immunological) cohort effects, repeat vaccination, and potential within-season waning immunity—may influence vaccine performance.

          Abstract

          Background

          Vaccine effectiveness (VE) estimates for 2015–2016 seasonal influenza vaccine are reported from Canada’s Sentinel Practitioner Surveillance Network (SPSN). This season was characterized by a delayed 2009 pandemic influenza A(H1N1) virus (A[H1N1]pdm09) epidemic and concurrent influenza B(Victoria) virus activity. Potential influences on VE beyond antigenic match are explored, including viral genomic variation, birth cohort effects, prior vaccination, and epidemic period.

          Methods

          VE was estimated by a test-negative design comparing the adjusted odds ratio for influenza test positivity among vaccinated compared to unvaccinated participants. Vaccine-virus relatedness was assessed by gene sequencing and hemagglutination inhibition assay.

          Results

          Analyses included 596 influenza A(H1N1)pdm09 and 305 B(Victoria) cases and 926 test-negative controls. A(H1N1)pdm09 viruses were considered antigenically related to vaccine (unchanged since 2009), despite phylogenetic clustering within emerging clade 6B.1. The adjusted VE against A(H1N1)pdm09 was 43% (95% confidence interval [CI], 25%–57%). Compared to other age groups, VE against A(H1N1)pdm09 was lower for adults born during 1957–1976 (25%; 95% CI, −16%–51%). The VE against A(H1N1)pdm09 was also lower for participants consecutively vaccinated during both the current and prior seasons (41%; 95% CI, 18%–57%) than for those vaccinated during the current season only (75%; 95% CI, 45%–88%), and the VE among participants presenting in March–April 2016 (19%; 95% CI, −15%–44%) was lower than that among those presenting during January–February 2016 (62%; 95% CI, 44%–74%). The adjusted VE for B(Victoria) viruses was 54% (95% CI, 32%–68%), despite lineage-level mismatch to B(Yamagata) vaccine. The further variation in VE as observed for A(H1N1)pdm09 was not observed for B(Victoria).

          Conclusions

          Influenza VE findings may require consideration of other agent-host and immuno-epidemiologic influences on vaccine performance beyond antigenic match, including viral genomic variation, repeat vaccination, birth (immunological) cohort effects, and potential within-season waning of vaccine protection.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Comparing influenza vaccine efficacy against mismatched and matched strains: a systematic review and meta-analysis

          Background Influenza vaccines are most effective when the antigens in the vaccine match those of circulating strains. However, antigens contained in the vaccines do not always match circulating strains. In the present work we aimed to examine the vaccine efficacy (VE) afforded by influenza vaccines when they are not well matched to circulating strains. Methods We identified randomized clinical trials (RCTs) through MEDLINE, EMBASE, the Cochrane Library, and references of included RCTs. RCTs reporting laboratory-confirmed influenza among healthy participants vaccinated with antigens of matching and non-matching influenza strains were included. Two independent reviewers screened citations/full-text articles, abstracted data, and appraised risk of bias. Conflicts were resolved by discussion. A random effects meta-analysis was conducted. VE was calculated using the following formula: (1 - relative risk × 100%). Results We included 34 RCTs, providing data on 47 influenza seasons and 94,821 participants. The live-attenuated influenza vaccine (LAIV) showed significant protection against mismatched (six RCTs, VE 54%, 95% confidence interval (CI) 28% to 71%) and matched (seven RCTs, VE 83%, 95% CI 75% to 88%) influenza strains among children aged 6 to 36 months. Differences were observed between the point estimates for mismatched influenza A (five RCTs, VE 75%, 95% CI 41% to 90%) and mismatched influenza B (five RCTs, VE 42%, 95% CI 22% to 56%) estimates among children aged 6 to 36 months. The trivalent inactivated vaccine (TIV) also afforded significant protection against mismatched (nine RCTs, VE 52%, 95% CI 37% to 63%) and matched (eight RCTs, VE 65%, 95% CI 54% to 73%) influenza strains among adults. Numerical differences were observed between the point estimates for mismatched influenza A (five RCTs, VE 64%, 95% CI 23% to 82%) and mismatched influenza B (eight RCTs, VE 52%, 95% CI 19% to 72%) estimates among adults. Statistical heterogeneity was low (I2 <50%) across all meta-analyses, except for the LAIV meta-analyses among children (I2 = 79%). Conclusions The TIV and LAIV vaccines can provide cross protection against non-matching circulating strains. The point estimates for VE were different for matching versus non-matching strains, with overlapping CIs.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Low 2012–13 Influenza Vaccine Effectiveness Associated with Mutation in the Egg-Adapted H3N2 Vaccine Strain Not Antigenic Drift in Circulating Viruses

            Background Influenza vaccine effectiveness (VE) is generally interpreted in the context of vaccine match/mismatch to circulating strains with evolutionary drift in the latter invoked to explain reduced protection. During the 2012–13 season, however, detailed genotypic and phenotypic characterization shows that low VE was instead related to mutations in the egg-adapted H3N2 vaccine strain rather than antigenic drift in circulating viruses. Methods/Findings Component-specific VE against medically-attended, PCR-confirmed influenza was estimated in Canada by test-negative case-control design. Influenza A viruses were characterized genotypically by amino acid (AA) sequencing of established haemagglutinin (HA) antigenic sites and phenotypically through haemagglutination inhibition (HI) assay. H3N2 viruses were characterized in relation to the WHO-recommended, cell-passaged vaccine prototype (A/Victoria/361/2011) as well as the egg-adapted strain as per actually used in vaccine production. Among the total of 1501 participants, influenza virus was detected in 652 (43%). Nearly two-thirds of viruses typed/subtyped were A(H3N2) (394/626; 63%); the remainder were A(H1N1)pdm09 (79/626; 13%), B/Yamagata (98/626; 16%) or B/Victoria (54/626; 9%). Suboptimal VE of 50% (95%CI: 33–63%) overall was driven by predominant H3N2 activity for which VE was 41% (95%CI: 17–59%). All H3N2 field isolates were HI-characterized as well-matched to the WHO-recommended A/Victoria/361/2011 prototype whereas all but one were antigenically distinct from the egg-adapted strain as per actually used in vaccine production. The egg-adapted strain was itself antigenically distinct from the WHO-recommended prototype, and bore three AA mutations at antigenic sites B [H156Q, G186V] and D [S219Y]. Conversely, circulating viruses were identical to the WHO-recommended prototype at these positions with other genetic variation that did not affect antigenicity. VE was 59% (95%CI:16–80%) against A(H1N1)pdm09, 67% (95%CI: 30–85%) against B/Yamagata (vaccine-lineage) and 75% (95%CI: 29–91%) against B/Victoria (non-vaccine-lineage) viruses. Conclusions These findings underscore the need to monitor vaccine viruses as well as circulating strains to explain vaccine performance. Evolutionary drift in circulating viruses cannot be regulated, but influential mutations introduced as part of egg-based vaccine production may be amenable to improvements.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Estimates of deaths associated with seasonal influenza --- United States, 1976-2007.

              David Shay (2010)
              Influenza infections are associated with thousands of deaths every year in the United States, with the majority of deaths from seasonal influenza occurring among adults aged >or=65 years. For several decades, CDC has made annual estimates of influenza-associated deaths, which have been used in influenza research and to develop influenza control and prevention policy. To update previously published estimates of the numbers and rates of influenza-associated deaths during 1976-2003 by adding four influenza seasons through 2006-07, CDC used statistical models with data from death certificate reports. National mortality data for two categories of underlying cause of death codes, pneumonia and influenza causes and respiratory and circulatory causes, were used in regression models to estimate lower and upper bounds for the number of influenza-associated deaths. Estimates by seasonal influenza virus type and subtype were examined to determine any association between virus type and subtype and the number of deaths in a season. This report summarizes the results of these analyses, which found that, during 1976-2007, estimates of annual influenza-associated deaths from respiratory and circulatory causes (including pneumonia and influenza causes) ranged from 3,349 in 1986-87 to 48,614 in 2003-04. The annual rate of influenza-associated death in the United States overall during this period ranged from 1.4 to 16.7 deaths per 100,000 persons. The findings also indicated the wide variation in the estimated number of deaths from season to season was closely related to the particular influenza virus types and subtypes in circulation.
                Bookmark

                Author and article information

                Journal
                J Infect Dis
                J. Infect. Dis
                jid
                The Journal of Infectious Diseases
                Oxford University Press (US )
                0022-1899
                1537-6613
                15 December 2017
                04 October 2017
                04 October 2017
                : 216
                : 12
                : 1487-1500
                Affiliations
                [1 ]British Columbia Centre for Disease Control, Vancouver
                [2 ]University of British Columbia, Vancouver
                [3 ]Institut National de Santé Publique du Québec
                [4 ]Laval University, Québec
                [5 ]Centre Hospitalier Universitaire de Québec, Québec
                [6 ]Public Health Ontario, Toronto
                [8 ]University of Toronto, Toronto
                [7 ]University of Calgary, Calgary
                [9 ]Alberta Provincial Laboratory, Edmonton
                [10 ]University of Alberta, Edmonton
                [11 ]National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
                Author notes
                Correspondence: D. M. Skowronski MD, FRCPC, BC Centre for Disease Control, 655 W 12th Ave, Vancouver, British Columbia, Canada V5Z 4R4 ( Danuta.Skowronski@ 123456bccdc.ca ).
                Article
                jix526
                10.1093/infdis/jix526
                5853508
                29029166
                bb5a7729-ab11-42fa-8742-c56b158cca8a
                © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs licence ( http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reproduction and distribution of the work, in any medium, provided the original work is not altered or transformed in any way, and that the work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

                History
                Page count
                Pages: 14
                Categories
                Major Articles and Brief Reports
                Viruses

                Infectious disease & Microbiology
                influenza,influenza vaccine,vaccine effectiveness,influenza a subtype,influenza b lineage,sequencing,hemagglutination inhibition,birth cohort effects,original antigenic sin,repeat vaccination

                Comments

                Comment on this article