34
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Shrinking Wings for Ultrasonic Pitch Production: Hyperintense Ultra-Short-Wavelength Calls in a New Genus of Neotropical Katydids (Orthoptera: Tettigoniidae)

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This article reports the discovery of a new genus and three species of predaceous katydid (Insecta: Orthoptera) from Colombia and Ecuador in which males produce the highest frequency ultrasonic calling songs so far recorded from an arthropod. Male katydids sing by rubbing their wings together to attract distant females. Their song frequencies usually range from audio (5 kHz) to low ultrasonic (30 kHz). However, males of Supersonus spp. call females at 115 kHz, 125 kHz, and 150 kHz. Exceeding the human hearing range (50 Hz–20 kHz) by an order of magnitude, these insects also emit their ultrasound at unusually elevated sound pressure levels (SPL). In all three species these calls exceed 110 dB SPL rms re 20 µPa (at 15 cm). Males of Supersonus spp. have unusually reduced forewings (<0.5 mm 2). Only the right wing radiates appreciable sound, the left bears the file and does not show a particular resonance. In contrast to most katydids, males of Supersonus spp. position and move their wings during sound production so that the concave aspect of the right wing, underlain by the insect dorsum, forms a contained cavity with sharp resonance. The observed high SPL at extreme carrier frequencies can be explained by wing anatomy, a resonant cavity with a membrane, and cuticle deformation.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          Design and mechanical properties of insect cuticle.

          Since nearly all adult insects fly, the cuticle has to provide a very efficient and lightweight skeleton. Information is available about the mechanical properties of cuticle-Young's modulus of resilin is about 1 MPa, of soft cuticles about 1 kPa to 50 MPa, of sclerotised cuticles 1-20 GPa; Vicker's Hardness of sclerotised cuticle ranges between 25 and 80 kgf mm(-2); density is 1-1.3 kg m(-3)-and one of its components, chitin nanofibres, the Young's modulus of which is more than 150 GPa. Experiments based on fracture mechanics have not been performed although the layered structure probably provides some toughening. The structural performance of wings and legs has been measured, but our understanding of the importance of buckling is lacking: it can stiffen the structure (by elastic postbuckling in wings, for example) or be a failure mode. We know nothing of fatigue properties (yet, for instance, the insect wing must undergo millions of cycles, flexing or buckling on each cycle). The remarkable mechanical performance and efficiency of cuticle can be analysed and compared with those of other materials using material property charts and material indices. Presented in this paper are four: Young's modulus-density (stiffness per unit weight), specific Young's modulus-specific strength (elastic hinges, elastic energy storage per unit weight), toughness-Young's modulus (fracture resistance under various loading conditions), and hardness (wear resistance). In conjunction with a structural analysis of cuticle these charts help to understand the relevance of microstructure (fibre orientation effects in tendons, joints and sense organs, for example) and shape (including surface structure) of this fibrous composite for a given function. With modern techniques for analysis of structure and material, and emphasis on nanocomposites and self-assembly, insect cuticle should be the archetype for composites at all levels of scale.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Size and scale effects as constraints in insect sound communication

              Bookmark
              • Record: found
              • Abstract: not found
              • Book: not found

              Ultrasonic Communication by Animals

                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2014
                5 June 2014
                : 9
                : 6
                : e98708
                Affiliations
                [1 ]School of Life Sciences, Riseholme Campus, University of Lincoln, Lincoln, Lincolnshire, United Kingdom
                [2 ]Department of Biology, University of Toronto at Mississauga, Mississauga, Ontario, Canada
                [3 ]Centre for Ultrasonic Engineering, Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, United Kingdom
                University of Arkansas, United States of America
                Author notes

                Competing Interests: Please note that the project received funding from National Geographic. This does not alter the authors' adherence to PLOS ONE policies on sharing data and materials. National Geographic has the copyright on any potential scientific documentary on expeditions and discoveries derived from this project. National Geographic has the right on public engagement and popular articles derived from the research, but they agree with the main scientific discoveries to be published in specialized peer-reviewed scientific journals.

                Conceived and designed the experiments: FASS FMZ JFCW JJ GKM. Performed the experiments: FASS FMZ JFCW JJ. Analyzed the data: FASS FMZ JFCW JJ GKM. Contributed reagents/materials/analysis tools: FASS FMZ JFCW JJ. Wrote the paper: FMZ GKM FASS JFCW JJ.

                Article
                PONE-D-14-07523
                10.1371/journal.pone.0098708
                4047022
                24901234
                bb5f3a29-3bcc-47fc-904a-bca3078ece8a
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 17 February 2014
                : 30 April 2014
                Page count
                Pages: 14
                Funding
                This work was sponsored by National Geographic ( http://www.nationalgeographic.co.uk/explorers/grants-programs/), grant #GEFNE17-11 to FM-Z). Royal Society ( http://royalsociety.org/grants/) provided funds for equipment used in this research (grant no. RG120495) to FM-Z. JCJ was supported by the Engineering and Physical Sciences Research Council (EPSRC) ( http://www.epsrc.ac.uk/Pages/default.aspx) grant no. EP/H02848X/1. JFCW was supported by the Biotechnology & Biological Sciences Research Council (BBSRC) ( http://www.bbsrc.ac.uk/home/home.aspx) grant no. BB/H0046371. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Anatomy
                Nervous System
                Motor System
                Comparative Anatomy
                Biomechanics
                Biophysics
                Biotechnology
                Bioengineering
                Biomimetics
                Evolutionary Biology
                Neuroscience
                Sensory Systems
                Auditory System
                Behavioral Neuroscience
                Zoology
                Animal Behavior
                Entomology
                Engineering and Technology

                Uncategorized
                Uncategorized

                Comments

                Comment on this article