15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Prevention of salt-induced renal injury by activation of NAD(P)H:quinone oxidoreductase 1, associated with NADPH oxidase

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          NADPH oxidase (NOX) is a predominant source of reactive oxygen species (ROS), and the activity of NOX, which uses NADPH as a common rate-limiting substrate, is upregulated by prolonged dietary salt intake. β-Lapachone (βL), a well-known substrate of NAD(P)H:quinone oxidoreductase 1 (NQO1), decreases the cellular NAD(P)H/NAD(P)(+) ratio via activation of NQO1. In this study, we evaluated whether NQO1 activation by βL modulates salt-induced renal injury associated with NOX-derived ROS regulation in an animal model. Dahl salt-sensitive (DS) rats fed a high-salt (HS) diet were used to investigate the renoprotective effect of NQO1 activation. βL treatment significantly lowered the cellular NAD(P)H:NAD(P)(+) ratio and dramatically reduced NOX activity in the kidneys of HS diet-fed DS rats. In accordance with this, total ROS production and expression of oxidative adducts also decreased in the βL-treated group. Furthermore, HS diet-induced proteinuria and glomerular damage were markedly suppressed, and inflammation, fibrosis, and apoptotic cell death were significantly diminished by βL treatment. This study is the first to demonstrate that activation of NQO1 has a renoprotective effect that is mediated by NOX activity via modulation of the cellular NAD(P)H:NAD(P)(+) ratio. These results provide strong evidence that NQO1 might be a new therapeutic target for the prevention of salt-induced renal injury. Copyright © 2011 Elsevier Inc. All rights reserved.

          Related collections

          Author and article information

          Journal
          Free Radical Biology and Medicine
          Free Radical Biology and Medicine
          Elsevier BV
          08915849
          March 2012
          March 2012
          : 52
          : 5
          : 880-888
          Article
          10.1016/j.freeradbiomed.2011.12.007
          22227174
          bb759dc4-b692-4187-9a65-8e42ca47f2d6
          © 2012

          https://www.elsevier.com/tdm/userlicense/1.0/

          History

          Comments

          Comment on this article