20
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      COVID-19 cytokine storm: The anger of inflammation

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Highlights:

          • Increased activity of the RAAS system occurs in the COVID-19 induced cytokine storm.

          • The COVID-19 induced cytokine storm is accompanied with attenuation of MasR activity.

          • The SARS-CoV-2 associated ACE2 induces DABK and BKB1R hyper-activation.

          • The COVID-19 induced cytokine storm leads to hyperactivity of the complement system.

          Abstract

          Patients with COVID-19 who require ICU admission might have the cytokine storm. It is a state of out-of-control release of a variety of inflammatory cytokines. The molecular mechanism of the cytokine storm has not been explored extensively yet. The attachment of SARS-CoV-2 spike glycoprotein with angiotensin-converting enzyme 2 (ACE2), as its cellular receptor, triggers complex molecular events that leads to hyperinflammation. Four molecular axes that may be involved in SARS-CoV-2 driven inflammatory cytokine overproduction are addressed in this work. The virus-mediated down-regulation of ACE2 causes a burst of inflammatory cytokine release through dysregulation of the renin-angiotensin-aldosterone system (ACE/angiotensin II/AT1R axis), attenuation of Mas receptor (ACE2/MasR axis), increased activation of [des-Arg9]-bradykinin (ACE2/bradykinin B1R/DABK axis), and activation of the complement system including C5a and C5b-9 components. The molecular clarification of these axes will elucidate an array of therapeutic strategies to confront the cytokine storm in order to prevent and treat COVID-19 associated acute respiratory distress syndrome.

          Related collections

          Most cited references102

          • Record: found
          • Abstract: found
          • Article: not found

          Pathological findings of COVID-19 associated with acute respiratory distress syndrome

          Since late December, 2019, an outbreak of a novel coronavirus disease (COVID-19; previously known as 2019-nCoV)1, 2 was reported in Wuhan, China, 2 which has subsequently affected 26 countries worldwide. In general, COVID-19 is an acute resolved disease but it can also be deadly, with a 2% case fatality rate. Severe disease onset might result in death due to massive alveolar damage and progressive respiratory failure.2, 3 As of Feb 15, about 66 580 cases have been confirmed and over 1524 deaths. However, no pathology has been reported due to barely accessible autopsy or biopsy.2, 3 Here, we investigated the pathological characteristics of a patient who died from severe infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by postmortem biopsies. This study is in accordance with regulations issued by the National Health Commission of China and the Helsinki Declaration. Our findings will facilitate understanding of the pathogenesis of COVID-19 and improve clinical strategies against the disease. A 50-year-old man was admitted to a fever clinic on Jan 21, 2020, with symptoms of fever, chills, cough, fatigue and shortness of breath. He reported a travel history to Wuhan Jan 8–12, and that he had initial symptoms of mild chills and dry cough on Jan 14 (day 1 of illness) but did not see a doctor and kept working until Jan 21 (figure 1 ). Chest x-ray showed multiple patchy shadows in both lungs (appendix p 2), and a throat swab sample was taken. On Jan 22 (day 9 of illness), the Beijing Centers for Disease Control (CDC) confirmed by reverse real-time PCR assay that the patient had COVID-19. Figure 1 Timeline of disease course according to days from initial presentation of illness and days from hospital admission, from Jan 8–27, 2020 SARS-CoV-2=severe acute respiratory syndrome coronavirus 2. He was immediately admitted to the isolation ward and received supplemental oxygen through a face mask. He was given interferon alfa-2b (5 million units twice daily, atomisation inhalation) and lopinavir plus ritonavir (500 mg twice daily, orally) as antiviral therapy, and moxifloxacin (0·4 g once daily, intravenously) to prevent secondary infection. Given the serious shortness of breath and hypoxaemia, methylprednisolone (80 mg twice daily, intravenously) was administered to attenuate lung inflammation. Laboratory tests results are listed in the appendix (p 4). After receiving medication, his body temperature reduced from 39·0 to 36·4 °C. However, his cough, dyspnoea, and fatigue did not improve. On day 12 of illness, after initial presentation, chest x-ray showed progressive infiltrate and diffuse gridding shadow in both lungs. He refused ventilator support in the intensive care unit repeatedly because he suffered from claustrophobia; therefore, he received high-flow nasal cannula (HFNC) oxygen therapy (60% concentration, flow rate 40 L/min). On day 13 of illness, the patient's symptoms had still not improved, but oxygen saturation remained above 95%. In the afternoon of day 14 of illness, his hypoxaemia and shortness of breath worsened. Despite receiving HFNC oxygen therapy (100% concentration, flow rate 40 L/min), oxygen saturation values decreased to 60%, and the patient had sudden cardiac arrest. He was immediately given invasive ventilation, chest compression, and adrenaline injection. Unfortunately, the rescue was not successful, and he died at 18:31 (Beijing time). Biopsy samples were taken from lung, liver, and heart tissue of the patient. Histological examination showed bilateral diffuse alveolar damage with cellular fibromyxoid exudates (figure 2A, B ). The right lung showed evident desquamation of pneumocytes and hyaline membrane formation, indicating acute respiratory distress syndrome (ARDS; figure 2A). The left lung tissue displayed pulmonary oedema with hyaline membrane formation, suggestive of early-phase ARDS (figure 2B). Interstitial mononuclear inflammatory infiltrates, dominated by lymphocytes, were seen in both lungs. Multinucleated syncytial cells with atypical enlarged pneumocytes characterised by large nuclei, amphophilic granular cytoplasm, and prominent nucleoli were identified in the intra-alveolar spaces, showing viral cytopathic-like changes. No obvious intranuclear or intracytoplasmic viral inclusions were identified. Figure 2 Pathological manifestations of right (A) and left (B) lung tissue, liver tissue (C), and heart tissue (D) in a patient with severe pneumonia caused by SARS-CoV-2 SARS-CoV-2=severe acute respiratory syndrome coronavirus 2. The pathological features of COVID-19 greatly resemble those seen in SARS and Middle Eastern respiratory syndrome (MERS) coronavirus infection.4, 5 In addition, the liver biopsy specimens of the patient with COVID-19 showed moderate microvesicular steatosis and mild lobular and portal activity (figure 2C), indicating the injury could have been caused by either SARS-CoV-2 infection or drug-induced liver injury. There were a few interstitial mononuclear inflammatory infiltrates, but no other substantial damage in the heart tissue (figure 2D). Peripheral blood was prepared for flow cytometric analysis. We found that the counts of peripheral CD4 and CD8 T cells were substantially reduced, while their status was hyperactivated, as evidenced by the high proportions of HLA-DR (CD4 3·47%) and CD38 (CD8 39·4%) double-positive fractions (appendix p 3). Moreover, there was an increased concentration of highly proinflammatory CCR6+ Th17 in CD4 T cells (appendix p 3). Additionally, CD8 T cells were found to harbour high concentrations of cytotoxic granules, in which 31·6% cells were perforin positive, 64·2% cells were granulysin positive, and 30·5% cells were granulysin and perforin double-positive (appendix p 3). Our results imply that overactivation of T cells, manifested by increase of Th17 and high cytotoxicity of CD8 T cells, accounts for, in part, the severe immune injury in this patient. X-ray images showed rapid progression of pneumonia and some differences between the left and right lung. In addition, the liver tissue showed moderate microvesicular steatosis and mild lobular activity, but there was no conclusive evidence to support SARS-CoV-2 infection or drug-induced liver injury as the cause. There were no obvious histological changes seen in heart tissue, suggesting that SARS-CoV-2 infection might not directly impair the heart. Although corticosteroid treatment is not routinely recommended to be used for SARS-CoV-2 pneumonia, 1 according to our pathological findings of pulmonary oedema and hyaline membrane formation, timely and appropriate use of corticosteroids together with ventilator support should be considered for the severe patients to prevent ARDS development. Lymphopenia is a common feature in the patients with COVID-19 and might be a critical factor associated with disease severity and mortality. 3 Our clinical and pathological findings in this severe case of COVID-19 can not only help to identify a cause of death, but also provide new insights into the pathogenesis of SARS-CoV-2-related pneumonia, which might help physicians to formulate a timely therapeutic strategy for similar severe patients and reduce mortality. This online publication has been corrected. The corrected version first appeared at thelancet.com/respiratory on February 25, 2020
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor

            A new and highly pathogenic coronavirus (severe acute respiratory syndrome coronavirus-2, SARS-CoV-2) caused an outbreak in Wuhan city, Hubei province, China, starting from December 2019 that quickly spread nationwide and to other countries around the world1-3. Here, to better understand the initial step of infection at an atomic level, we determined the crystal structure of the receptor-binding domain (RBD) of the spike protein of SARS-CoV-2 bound to the cell receptor ACE2. The overall ACE2-binding mode of the SARS-CoV-2 RBD is nearly identical to that of the SARS-CoV RBD, which also uses ACE2 as the cell receptor4. Structural analysis identified residues in the SARS-CoV-2 RBD that are essential for ACE2 binding, the majority of which either are highly conserved or share similar side chain properties with those in the SARS-CoV RBD. Such similarity in structure and sequence strongly indicate convergent evolution between the SARS-CoV-2 and SARS-CoV RBDs for improved binding to ACE2, although SARS-CoV-2 does not cluster within SARS and SARS-related coronaviruses1-3,5. The epitopes of two SARS-CoV antibodies that target the RBD are also analysed for binding to the SARS-CoV-2 RBD, providing insights into the future identification of cross-reactive antibodies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found

              Emerging coronaviruses: Genome structure, replication, and pathogenesis

              Abstract The recent emergence of a novel coronavirus (2019‐nCoV), which is causing an outbreak of unusual viral pneumonia in patients in Wuhan, a central city in China, is another warning of the risk of CoVs posed to public health. In this minireview, we provide a brief introduction of the general features of CoVs and describe diseases caused by different CoVs in humans and animals. This review will help understand the biology and potential risk of CoVs that exist in richness in wildlife such as bats.
                Bookmark

                Author and article information

                Contributors
                Journal
                Cytokine
                Cytokine
                Cytokine
                Published by Elsevier Ltd.
                1043-4666
                1096-0023
                30 May 2020
                30 May 2020
                : 155151
                Affiliations
                [a ]The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
                [b ]Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
                [c ]Department of Immunology and Allergy, The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
                [d ]Future Studies Group, The Academy of Medical Sciences of the I.R. Iran
                Author notes
                [* ]Corresponding author at: The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran. inabipour@ 123456gmail.com
                Article
                S1043-4666(20)30167-8 155151
                10.1016/j.cyto.2020.155151
                7260598
                32544563
                bbdeb0f0-2316-4eb9-b2d1-f08b4b719ad1
                © 2020 Published by Elsevier Ltd.

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                : 14 April 2020
                : 20 May 2020
                : 28 May 2020
                Categories
                Article

                Cell biology
                covid-19,sars-cov-2,ace2,cytokine storm
                Cell biology
                covid-19, sars-cov-2, ace2, cytokine storm

                Comments

                Comment on this article