0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effectiveness of registered nurses on system outcomes in primary care: a systematic review

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Internationally, policy-makers and health administrators are seeking evidence to inform further integration and optimal utilization of registered nurses (RNs) within primary care teams. Although existing literature provides some information regarding RN contributions, further evidence on the impact of RNs towards quality and cost of care is necessary to demonstrate the contribution of this role on health system outcomes. In this study we synthesize international evidence on the effectiveness of RNs on care delivery and system-level outcomes in primary care.

          Methods

          A systematic review was conducted in accordance with Joanna Briggs Institute methodology. Searches were conducted in CINAHL, MEDLINE Complete, PsycINFO, and Embase for published literature and ProQuest Dissertations and Theses and MedNar for unpublished literature between 2019 and 2022 using relevant subject headings and keywords. Additional literature was identified through Google Scholar, websites, and reference lists of included articles. Studies were included if they measured effectiveness of a RN-led intervention (i.e., any care/activity performed by a primary care RN within the context of an independent or interdependent role) and reported outcomes of these interventions. Included studies were published in English; no date or location restrictions were applied. Risk of bias was assessed using the Integrated Quality Criteria for Review of Multiple Study Designs tool. Due to the heterogeneity of included studies, a narrative synthesis was undertaken.

          Results

          Seventeen articles were eligible for inclusion, with 11 examining system outcomes (e.g., cost, workload) and 15 reporting on outcomes related to care delivery (e.g., illness management, quality of smoking cessation support). The studies suggest that RN-led care may have an impact on outcomes, specifically in relation to the provision of medication management, patient triage, chronic disease management, sexual health, routine preventative care, health promotion/education, and self-management interventions (e.g. smoking cessation support).

          Conclusions

          The findings suggest that primary care RNs impact the delivery of quality primary care, and that RN-led care may complement and potentially enhance primary care delivered by other primary care providers. Ongoing evaluation in this area is important to further refine nursing scope of practice policy, determine the impact of RN-led care on outcomes, and inform improvements to primary care infrastructure and systems management to meet care needs.

          Protocol registration ID

          PROSPERO: International prospective register of systematic reviews. 2018. ID= CRD42018090767.

          Supplementary Information

          The online version contains supplementary material available at 10.1186/s12913-022-07662-7.

          Related collections

          Most cited references57

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The PRISMA 2020 statement: an updated guideline for reporting systematic reviews

          The Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) statement, published in 2009, was designed to help systematic reviewers transparently report why the review was done, what the authors did, and what they found. Over the past decade, advances in systematic review methodology and terminology have necessitated an update to the guideline. The PRISMA 2020 statement replaces the 2009 statement and includes new reporting guidance that reflects advances in methods to identify, select, appraise, and synthesise studies. The structure and presentation of the items have been modified to facilitate implementation. In this article, we present the PRISMA 2020 27-item checklist, an expanded checklist that details reporting recommendations for each item, the PRISMA 2020 abstract checklist, and the revised flow diagrams for original and updated reviews.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement

            Introduction Systematic reviews and meta-analyses have become increasingly important in health care. Clinicians read them to keep up to date with their field [1],[2], and they are often used as a starting point for developing clinical practice guidelines. Granting agencies may require a systematic review to ensure there is justification for further research [3], and some health care journals are moving in this direction [4]. As with all research, the value of a systematic review depends on what was done, what was found, and the clarity of reporting. As with other publications, the reporting quality of systematic reviews varies, limiting readers' ability to assess the strengths and weaknesses of those reviews. Several early studies evaluated the quality of review reports. In 1987, Mulrow examined 50 review articles published in four leading medical journals in 1985 and 1986 and found that none met all eight explicit scientific criteria, such as a quality assessment of included studies [5]. In 1987, Sacks and colleagues [6] evaluated the adequacy of reporting of 83 meta-analyses on 23 characteristics in six domains. Reporting was generally poor; between one and 14 characteristics were adequately reported (mean = 7.7; standard deviation = 2.7). A 1996 update of this study found little improvement [7]. In 1996, to address the suboptimal reporting of meta-analyses, an international group developed a guidance called the QUOROM Statement (QUality Of Reporting Of Meta-analyses), which focused on the reporting of meta-analyses of randomized controlled trials [8]. In this article, we summarize a revision of these guidelines, renamed PRISMA (Preferred Reporting Items for Systematic reviews and Meta-Analyses), which have been updated to address several conceptual and practical advances in the science of systematic reviews (Box 1). Box 1: Conceptual Issues in the Evolution from QUOROM to PRISMA Completing a Systematic Review Is an Iterative Process The conduct of a systematic review depends heavily on the scope and quality of included studies: thus systematic reviewers may need to modify their original review protocol during its conduct. Any systematic review reporting guideline should recommend that such changes can be reported and explained without suggesting that they are inappropriate. The PRISMA Statement (Items 5, 11, 16, and 23) acknowledges this iterative process. Aside from Cochrane reviews, all of which should have a protocol, only about 10% of systematic reviewers report working from a protocol [22]. Without a protocol that is publicly accessible, it is difficult to judge between appropriate and inappropriate modifications. Conduct and Reporting Research Are Distinct Concepts This distinction is, however, less straightforward for systematic reviews than for assessments of the reporting of an individual study, because the reporting and conduct of systematic reviews are, by nature, closely intertwined. For example, the failure of a systematic review to report the assessment of the risk of bias in included studies may be seen as a marker of poor conduct, given the importance of this activity in the systematic review process [37]. Study-Level Versus Outcome-Level Assessment of Risk of Bias For studies included in a systematic review, a thorough assessment of the risk of bias requires both a “study-level” assessment (e.g., adequacy of allocation concealment) and, for some features, a newer approach called “outcome-level” assessment. An outcome-level assessment involves evaluating the reliability and validity of the data for each important outcome by determining the methods used to assess them in each individual study [38]. The quality of evidence may differ across outcomes, even within a study, such as between a primary efficacy outcome, which is likely to be very carefully and systematically measured, and the assessment of serious harms [39], which may rely on spontaneous reports by investigators. This information should be reported to allow an explicit assessment of the extent to which an estimate of effect is correct [38]. Importance of Reporting Biases Different types of reporting biases may hamper the conduct and interpretation of systematic reviews. Selective reporting of complete studies (e.g., publication bias) [28] as well as the more recently empirically demonstrated “outcome reporting bias” within individual studies [40],[41] should be considered by authors when conducting a systematic review and reporting its results. Though the implications of these biases on the conduct and reporting of systematic reviews themselves are unclear, some previous research has identified that selective outcome reporting may occur also in the context of systematic reviews [42]. Terminology The terminology used to describe a systematic review and meta-analysis has evolved over time. One reason for changing the name from QUOROM to PRISMA was the desire to encompass both systematic reviews and meta-analyses. We have adopted the definitions used by the Cochrane Collaboration [9]. A systematic review is a review of a clearly formulated question that uses systematic and explicit methods to identify, select, and critically appraise relevant research, and to collect and analyze data from the studies that are included in the review. Statistical methods (meta-analysis) may or may not be used to analyze and summarize the results of the included studies. Meta-analysis refers to the use of statistical techniques in a systematic review to integrate the results of included studies. Developing the PRISMA Statement A three-day meeting was held in Ottawa, Canada, in June 2005 with 29 participants, including review authors, methodologists, clinicians, medical editors, and a consumer. The objective of the Ottawa meeting was to revise and expand the QUOROM checklist and flow diagram, as needed. The executive committee completed the following tasks, prior to the meeting: a systematic review of studies examining the quality of reporting of systematic reviews, and a comprehensive literature search to identify methodological and other articles that might inform the meeting, especially in relation to modifying checklist items. An international survey of review authors, consumers, and groups commissioning or using systematic reviews and meta-analyses was completed, including the International Network of Agencies for Health Technology Assessment (INAHTA) and the Guidelines International Network (GIN). The survey aimed to ascertain views of QUOROM, including the merits of the existing checklist items. The results of these activities were presented during the meeting and are summarized on the PRISMA Web site (http://www.prisma-statement.org/). Only items deemed essential were retained or added to the checklist. Some additional items are nevertheless desirable, and review authors should include these, if relevant [10]. For example, it is useful to indicate whether the systematic review is an update [11] of a previous review, and to describe any changes in procedures from those described in the original protocol. Shortly after the meeting a draft of the PRISMA checklist was circulated to the group, including those invited to the meeting but unable to attend. A disposition file was created containing comments and revisions from each respondent, and the checklist was subsequently revised 11 times. The group approved the checklist, flow diagram, and this summary paper. Although no direct evidence was found to support retaining or adding some items, evidence from other domains was believed to be relevant. For example, Item 5 asks authors to provide registration information about the systematic review, including a registration number, if available. Although systematic review registration is not yet widely available [12],[13], the participating journals of the International Committee of Medical Journal Editors (ICMJE) [14] now require all clinical trials to be registered in an effort to increase transparency and accountability [15]. Those aspects are also likely to benefit systematic reviewers, possibly reducing the risk of an excessive number of reviews addressing the same question [16],[17] and providing greater transparency when updating systematic reviews. The PRISMA Statement The PRISMA Statement consists of a 27-item checklist (Table 1; see also Text S1 for a downloadable Word template for researchers to re-use) and a four-phase flow diagram (Figure 1; see also Figure S1 for a downloadable Word template for researchers to re-use). The aim of the PRISMA Statement is to help authors improve the reporting of systematic reviews and meta-analyses. We have focused on randomized trials, but PRISMA can also be used as a basis for reporting systematic reviews of other types of research, particularly evaluations of interventions. PRISMA may also be useful for critical appraisal of published systematic reviews. However, the PRISMA checklist is not a quality assessment instrument to gauge the quality of a systematic review. 10.1371/journal.pmed.1000097.g001 Figure 1 Flow of information through the different phases of a systematic review. 10.1371/journal.pmed.1000097.t001 Table 1 Checklist of items to include when reporting a systematic review or meta-analysis. Section/Topic # Checklist Item Reported on Page # TITLE Title 1 Identify the report as a systematic review, meta-analysis, or both. ABSTRACT Structured summary 2 Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number. INTRODUCTION Rationale 3 Describe the rationale for the review in the context of what is already known. Objectives 4 Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS). METHODS Protocol and registration 5 Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number. Eligibility criteria 6 Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale. Information sources 7 Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched. Search 8 Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated. Study selection 9 State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis). Data collection process 10 Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators. Data items 11 List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made. Risk of bias in individual studies 12 Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis. Summary measures 13 State the principal summary measures (e.g., risk ratio, difference in means). Synthesis of results 14 Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I2) for each meta-analysis. Risk of bias across studies 15 Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies). Additional analyses 16 Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified. RESULTS Study selection 17 Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram. Study characteristics 18 For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations. Risk of bias within studies 19 Present data on risk of bias of each study and, if available, any outcome-level assessment (see Item 12). Results of individual studies 20 For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group and (b) effect estimates and confidence intervals, ideally with a forest plot. Synthesis of results 21 Present results of each meta-analysis done, including confidence intervals and measures of consistency. Risk of bias across studies 22 Present results of any assessment of risk of bias across studies (see Item 15). Additional analysis 23 Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]). DISCUSSION Summary of evidence 24 Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., health care providers, users, and policy makers). Limitations 25 Discuss limitations at study and outcome level (e.g., risk of bias), and at review level (e.g., incomplete retrieval of identified research, reporting bias). Conclusions 26 Provide a general interpretation of the results in the context of other evidence, and implications for future research. FUNDING Funding 27 Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review. From QUOROM to PRISMA The new PRISMA checklist differs in several respects from the QUOROM checklist, and the substantive specific changes are highlighted in Table 2. Generally, the PRISMA checklist “decouples” several items present in the QUOROM checklist and, where applicable, several checklist items are linked to improve consistency across the systematic review report. 10.1371/journal.pmed.1000097.t002 Table 2 Substantive specific changes between the QUOROM checklist and the PRISMA checklist (a tick indicates the presence of the topic in QUOROM or PRISMA). Section/Topic Item QUOROM PRISMA Comment Abstract √ √ QUOROM and PRISMA ask authors to report an abstract. However, PRISMA is not specific about format. Introduction Objective √ This new item (4) addresses the explicit question the review addresses using the PICO reporting system (which describes the participants, interventions, comparisons, and outcome(s) of the systematic review), together with the specification of the type of study design (PICOS); the item is linked to Items 6, 11, and 18 of the checklist. Methods Protocol √ This new item (5) asks authors to report whether the review has a protocol and if so how it can be accessed. Methods Search √ √ Although reporting the search is present in both QUOROM and PRISMA checklists, PRISMA asks authors to provide a full description of at least one electronic search strategy (Item 8). Without such information it is impossible to repeat the authors' search. Methods Assessment of risk of bias in included studies √ √ Renamed from “quality assessment” in QUOROM. This item (12) is linked with reporting this information in the results (Item 19). The new concept of “outcome-level” assessment has been introduced. Methods Assessment of risk of bias across studies √ This new item (15) asks authors to describe any assessments of risk of bias in the review, such as selective reporting within the included studies. This item is linked with reporting this information in the results (Item 22). Discussion √ √ Although both QUOROM and PRISMA checklists address the discussion section, PRISMA devotes three items (24–26) to the discussion. In PRISMA the main types of limitations are explicitly stated and their discussion required. Funding √ This new item (27) asks authors to provide information on any sources of funding for the systematic review. The flow diagram has also been modified. Before including studies and providing reasons for excluding others, the review team must first search the literature. This search results in records. Once these records have been screened and eligibility criteria applied, a smaller number of articles will remain. The number of included articles might be smaller (or larger) than the number of studies, because articles may report on multiple studies and results from a particular study may be published in several articles. To capture this information, the PRISMA flow diagram now requests information on these phases of the review process. Endorsement The PRISMA Statement should replace the QUOROM Statement for those journals that have endorsed QUOROM. We hope that other journals will support PRISMA; they can do so by registering on the PRISMA Web site. To underscore to authors, and others, the importance of transparent reporting of systematic reviews, we encourage supporting journals to reference the PRISMA Statement and include the PRISMA Web address in their Instructions to Authors. We also invite editorial organizations to consider endorsing PRISMA and encourage authors to adhere to its principles. The PRISMA Explanation and Elaboration Paper In addition to the PRISMA Statement, a supporting Explanation and Elaboration document has been produced [18] following the style used for other reporting guidelines [19]–[21]. The process of completing this document included developing a large database of exemplars to highlight how best to report each checklist item, and identifying a comprehensive evidence base to support the inclusion of each checklist item. The Explanation and Elaboration document was completed after several face to face meetings and numerous iterations among several meeting participants, after which it was shared with the whole group for additional revisions and final approval. Finally, the group formed a dissemination subcommittee to help disseminate and implement PRISMA. Discussion The quality of reporting of systematic reviews is still not optimal [22]–[27]. In a recent review of 300 systematic reviews, few authors reported assessing possible publication bias [22], even though there is overwhelming evidence both for its existence [28] and its impact on the results of systematic reviews [29]. Even when the possibility of publication bias is assessed, there is no guarantee that systematic reviewers have assessed or interpreted it appropriately [30]. Although the absence of reporting such an assessment does not necessarily indicate that it was not done, reporting an assessment of possible publication bias is likely to be a marker of the thoroughness of the conduct of the systematic review. Several approaches have been developed to conduct systematic reviews on a broader array of questions. For example, systematic reviews are now conducted to investigate cost-effectiveness [31], diagnostic [32] or prognostic questions [33], genetic associations [34], and policy making [35]. The general concepts and topics covered by PRISMA are all relevant to any systematic review, not just those whose objective is to summarize the benefits and harms of a health care intervention. However, some modifications of the checklist items or flow diagram will be necessary in particular circumstances. For example, assessing the risk of bias is a key concept, but the items used to assess this in a diagnostic review are likely to focus on issues such as the spectrum of patients and the verification of disease status, which differ from reviews of interventions. The flow diagram will also need adjustments when reporting individual patient data meta-analysis [36]. We have developed an explanatory document [18] to increase the usefulness of PRISMA. For each checklist item, this document contains an example of good reporting, a rationale for its inclusion, and supporting evidence, including references, whenever possible. We believe this document will also serve as a useful resource for those teaching systematic review methodology. We encourage journals to include reference to the explanatory document in their Instructions to Authors. Like any evidence-based endeavor, PRISMA is a living document. To this end we invite readers to comment on the revised version, particularly the new checklist and flow diagram, through the PRISMA Web site. We will use such information to inform PRISMA's continued development. Supporting Information Figure S1 Flow of information through the different phases of a systematic review (downloadable template document for researchers to re-use). (0.08 MB DOC) Click here for additional data file. Text S1 Checklist of items to include when reporting a systematic review or meta-analysis (downloadable template document for researchers to re-use). (0.04 MB DOC) Click here for additional data file.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Nurse-staffing levels and the quality of care in hospitals.

              It is uncertain whether lower levels of staffing by nurses at hospitals are associated with an increased risk that patients will have complications or die. We used administrative data from 1997 for 799 hospitals in 11 states (covering 5,075,969 discharges of medical patients and 1,104,659 discharges of surgical patients) to examine the relation between the amount of care provided by nurses at the hospital and patients' outcomes. We conducted regression analyses in which we controlled for patients' risk of adverse outcomes, differences in the nursing care needed for each hospital's patients, and other variables. The mean number of hours of nursing care per patient-day was 11.4, of which 7.8 hours were provided by registered nurses, 1.2 hours by licensed practical nurses, and 2.4 hours by nurses' aides. Among medical patients, a higher proportion of hours of care per day provided by registered nurses and a greater absolute number of hours of care per day provided by registered nurses were associated with a shorter length of stay (P=0.01 and P<0.001, respectively) and lower rates of both urinary tract infections (P<0.001 and P=0.003, respectively) and upper gastrointestinal bleeding (P=0.03 and P=0.007, respectively). A higher proportion of hours of care provided by registered nurses was also associated with lower rates of pneumonia (P=0.001), shock or cardiac arrest (P=0.007), and "failure to rescue," which was defined as death from pneumonia, shock or cardiac arrest, upper gastrointestinal bleeding, sepsis, or deep venous thrombosis (P=0.05). Among surgical patients, a higher proportion of care provided by registered nurses was associated with lower rates of urinary tract infections (P=0.04), and a greater number of hours of care per day provided by registered nurses was associated with lower rates of "failure to rescue" (P=0.008). We found no associations between increased levels of staffing by registered nurses and the rate of in-hospital death or between increased staffing by licensed practical nurses or nurses' aides and the rate of adverse outcomes. A higher proportion of hours of nursing care provided by registered nurses and a greater number of hours of care by registered nurses per day are associated with better care for hospitalized patients.
                Bookmark

                Author and article information

                Contributors
                jlukewich@mun.ca
                Journal
                BMC Health Serv Res
                BMC Health Serv Res
                BMC Health Services Research
                BioMed Central (London )
                1472-6963
                4 April 2022
                4 April 2022
                2022
                : 22
                : 440
                Affiliations
                [1 ]GRID grid.25055.37, ISNI 0000 0000 9130 6822, Faculty of Nursing, Memorial University, ; 300 Prince Phillip Drive, St. John’s, NL A1B 3V6 Canada
                [2 ]GRID grid.25055.37, ISNI 0000 0000 9130 6822, Department of Family Medicine, Memorial University, ; 300 Prince Phillip Drive, St. John’s, NL A1B 3V6 Canada
                [3 ]GRID grid.55602.34, ISNI 0000 0004 1936 8200, Department of Family Medicine Primary Care Research Unit, , Dalhousie University, ; 1465 Brenton Street, Suite 402, Halifax, NS B3J 3T4 Canada
                [4 ]GRID grid.39381.30, ISNI 0000 0004 1936 8884, Department of Family Medicine, Schulich School of Medicine & Dentistry, , University of Western, ; Ontario 1151 Richmond Street, London, ON N6A 5C1 Canada
                [5 ]GRID grid.25055.37, ISNI 0000 0000 9130 6822, Health Sciences Library, Faculty of Medicine, , Memorial University, ; 300 Prince Phillip Drive, St. John’s, NL A1B 3V6 Canada
                [6 ]GRID grid.410356.5, ISNI 0000 0004 1936 8331, School of Nursing, Queen’s University, ; 92 Barrie Street, Kingston, ON K7L 3N6 Canada
                [7 ]GRID grid.25073.33, ISNI 0000 0004 1936 8227, School of Nursing, McMaster University, ; 1280 Main St W, Hamilton, ON L8S 4L8 Canada
                [8 ]GRID grid.55602.34, ISNI 0000 0004 1936 8200, School of Nursing, Dalhousie University, ; 5869 University Ave. St, Halifax, NS B3H 4R2 Canada
                [9 ]GRID grid.21729.3f, ISNI 0000000419368729, School of Nursing, Columbia University, ; 630 West 168th Street, New York, NY 10032 USA
                [10 ]GRID grid.86715.3d, ISNI 0000 0000 9064 6198, Département de médecine de famille et médecine d’urgence, , Université de Sherbrooke, ; 2500 Boulevard de l’Université, Sherbrooke, QC J1K 2R1 Canada
                Article
                7662
                10.1186/s12913-022-07662-7
                8981870
                35379241
                bc295178-4460-48d8-862f-5bef7b146cca
                © The Author(s) 2022

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 10 November 2021
                : 9 February 2022
                Categories
                Research
                Custom metadata
                © The Author(s) 2022

                Health & Social care
                effectiveness,primary healthcare,registered nurse,primary care nursing,systematic review,outcomes,care delivery

                Comments

                Comment on this article

                scite_

                Similar content541

                Cited by5

                Most referenced authors1,335