1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      More than Five Decades of Proton Therapy: A Bibliometric Overview of the Scientific Literature

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background: The therapeutic potential of proton therapy (PT) was first recognized in 1946 by Robert Wilson, and nowadays, over 100 proton centers are in operation worldwide, and more than 60 are under construction or planned. Bibliometric data can be used to perform a structured analysis of large amounts of scientific data to provide new insights, e.g., to assess the growth and development of the field and to identify research trends and hot topics. The aim of this study is to provide a comprehensive bibliometric analysis of the current status and trends in scientific literature in the PT field. Methods: The literature on PT until the 31st December 2022 in the Scopus database was searched, including the following keywords: proton AND radiotherapy AND cancer/tumor in title, abstract, and/or keywords. The open-source R Studio’s Bibliometrix package and Biblioshiny software (version 2.0) were used to perform the analysis. Results: A total of 7335 documents, mainly articles (n = 4794, 65%) and reviews (n = 1527, 21%), were collected from 1946 to 2022 from 1054 sources and 21,696 authors. Of these, roughly 84% (n = 6167) were produced in the last 15 years (2008–2022), in which the mean annual growth rate was 13%. Considering the corresponding author’s country, 79 countries contributed to the literature; the USA was the top contributor, with 2765 (38%) documents, of whom 84% were single-country publications (SCP), followed by Germany and Japan, with 535 and 531 documents of whom 66% and 93% were SCP. Considering the themes subanalysis (2002–2022), a total of 7192 documents were analyzed; among all keywords used by authors, the top three were radiotherapy (n = 1394, 21% of documents), intensity-modulated radiotherapy (n = 301, 5%), and prostate cancer (n = 301, 5%). Among disease types, prostate cancer is followed by chordoma, head and neck, and breast cancer. The change in trend themes demonstrated the fast evolution of hotspots in PT; among the most recent trends, the appearance of flash, radiomics, relative biological effectiveness (RBE), and linear energy transfer (LET) deserve to be highlighted. Conclusions: The results of the present bibliometric analysis showed that PT is an active and rapidly increasing field of research. Themes of the published works encompass the main aspects of its application in clinical practice, such as the comparison with the actual photon-based standard of care technique and the continuing technological advances. This analysis gives an overview of past scientific production and, most importantly, provides a useful point of view on the future directions of the research activities.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: not found
          • Article: not found

          bibliometrix : An R-tool for comprehensive science mapping analysis

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Radiological use of fast protons.

            R R Wilson (1946)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Radiomics: from qualitative to quantitative imaging

              Historically, medical imaging has been a qualitative or semi-quantitative modality. It is difficult to quantify what can be seen in an image, and to turn it into valuable predictive outcomes. As a result of advances in both computational hardware and machine learning algorithms, computers are making great strides in obtaining quantitative information from imaging and correlating it with outcomes. Radiomics, in its two forms “handcrafted and deep,” is an emerging field that translates medical images into quantitative data to yield biological information and enable radiologic phenotypic profiling for diagnosis, theragnosis, decision support, and monitoring. Handcrafted radiomics is a multistage process in which features based on shape, pixel intensities, and texture are extracted from radiographs. Within this review, we describe the steps: starting with quantitative imaging data, how it can be extracted, how to correlate it with clinical and biological outcomes, resulting in models that can be used to make predictions, such as survival, or for detection and classification used in diagnostics. The application of deep learning, the second arm of radiomics, and its place in the radiomics workflow is discussed, along with its advantages and disadvantages. To better illustrate the technologies being used, we provide real-world clinical applications of radiomics in oncology, showcasing research on the applications of radiomics, as well as covering its limitations and its future direction.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                CANCCT
                Cancers
                Cancers
                MDPI AG
                2072-6694
                December 2023
                November 23 2023
                : 15
                : 23
                : 5545
                Article
                10.3390/cancers15235545
                bc73b598-a2c3-4762-a1d0-d8d160fec95b
                © 2023

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article