13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Interleukin-6 stimulates Akt and p38 MAPK phosphorylation and fibroblast migration in non-diabetic but not diabetic mice

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Persistent inflammatory environment and abnormal macrophage activation are characteristics of chronic diabetic wounds. Here, we attempted to characterize the differences in macrophage activation and temporal variations in cytokine expression in diabetic and non-diabetic wounds, with a focus on interleukin (IL)-6 mRNA expression and the p38 MAPK and PI3K/Akt signaling pathways. Cutaneous wound closure, CD68- and arginase-1 (Arg-1)-expressing macrophages, and cytokine mRNA expression were examined in non-diabetic and streptozotocin-induced type 1 diabetic mice at different time points after injury. The effect of IL-6 on p38 MAPK and Akt phosphorylation was investigated, and an in vitro scratch assay was performed to determine the role of IL-6 in primary skin fibroblast migration. Before injury, mRNA expression levels of the inflammatory markers iNOS, IL-6, and TNF-α were higher in diabetic mice; however, IL-6 expression was significantly lower 6 h post injury in diabetic wounds than that in non-diabetic wounds. Non-diabetic wounds exhibited increased p38 MAPK and Akt phosphorylation; however, no such increase was found in diabetic wounds. In fibroblasts from non-diabetic mice, IL-6 increased the phosphorylation of p38 MAPK and levels of its downstream factor CREB, and also significantly increased Akt phosphorylation and levels of its upstream factor P13K. These effects of IL-6 were not detected in fibroblasts derived from the diabetic mice. In scratch assays, IL-6 stimulated the migration of primary cultured skin fibroblasts from the non-diabetic mice, and the inhibition of p38 MAPK was found to markedly suppress IL-6–stimulated fibroblast migration. These findings underscore the critical differences between diabetic and non-diabetic wounds in terms of macrophage activation, cytokine mRNA expression profile, and involvement of the IL-6-stimulated p38 MAPK–Akt signaling pathway. Aberrant macrophage activation and abnormalities in the cytokine mRNA expression profile during different phases of wound healing should be addressed when designing effective therapeutic modalities for refractory diabetic wounds.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Colony-stimulating factors in inflammation and autoimmunity.

          Although they were originally defined as haematopoietic-cell growth factors, colony-stimulating factors (CSFs) have been shown to have additional functions by acting directly on mature myeloid cells. Recent data from animal models indicate that the depletion of CSFs has therapeutic benefit in many inflammatory and/or autoimmune conditions and as a result, early-phase clinical trials targeting granulocyte/macrophage colony-stimulating factor and macrophage colony-stimulating factor have now commenced. The distinct biological features of CSFs offer opportunities for specific targeting, but with some associated risks. Here, I describe these biological features, discuss the probable specific outcomes of targeting CSFs in vivo and highlight outstanding questions that need to be addressed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Regulation of wound healing by growth factors and cytokines.

            Cutaneous wound healing is a complex process involving blood clotting, inflammation, new tissue formation, and finally tissue remodeling. It is well described at the histological level, but the genes that regulate skin repair have only partially been identified. Many experimental and clinical studies have demonstrated varied, but in most cases beneficial, effects of exogenous growth factors on the healing process. However, the roles played by endogenous growth factors have remained largely unclear. Initial approaches at addressing this question focused on the expression analysis of various growth factors, cytokines, and their receptors in different wound models, with first functional data being obtained by applying neutralizing antibodies to wounds. During the past few years, the availability of genetically modified mice has allowed elucidation of the function of various genes in the healing process, and these studies have shed light onto the role of growth factors, cytokines, and their downstream effectors in wound repair. This review summarizes the results of expression studies that have been performed in rodents, pigs, and humans to localize growth factors and their receptors in skin wounds. Most importantly, we also report on genetic studies addressing the functions of endogenous growth factors in the wound repair process.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression.

              Comprehensive analysis of the gene expression profiles associated with human monocyte-to-macrophage differentiation and polarization toward M1 or M2 phenotypes led to the following main results: 1) M-CSF-driven monocyte-to-macrophage differentiation is associated with activation of cell cycle genes, substantiating the underestimated proliferation potential of monocytes. 2) M-CSF leads to expression of a substantial part of the M2 transcriptome, suggesting that under homeostatic conditions a default shift toward M2 occurs. 3) Modulation of genes involved in metabolic activities is a prominent feature of macrophage differentiation and polarization. 4) Lipid metabolism is a main category of modulated transcripts, with expected up-regulation of cyclo-oxygenase 2 in M1 cells and unexpected cyclo-oxygenase 1 up-regulation in M2 cells. 5) Each step is characterized by a different repertoire of G protein-coupled receptors, with five nucleotide receptors as novel M2-associated genes. 6) The chemokinome of polarized macrophages is profoundly diverse and new differentially expressed chemokines are reported. Thus, transcriptome profiling reveals novel molecules and signatures associated with human monocyte-to-macrophage differentiation and polarized activation which may represent candidate targets in pathophysiology.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                23 May 2017
                2017
                : 12
                : 5
                : e0178232
                Affiliations
                [1 ]Department of Plastic and Reconstructive Surgery, Juntendo University School of Medicine, Tokyo, Japan
                [2 ]Department of Plastic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
                University of New Mexico Health Sciences Center, UNITED STATES
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                • Data curation: TNYS RT.

                • Funding acquisition: RT.

                • Investigation: TNYS SK MK KO.

                • Methodology: TNYS SK MK KO LL RT.

                • Project administration: RT AH HM.

                • Software: TNYS RT.

                • Supervision: RT.

                • Validation: RT.

                • Visualization: TNYS KO.

                • Writing – original draft: TNYS.

                • Writing – review & editing: TNYS RT.

                Article
                PONE-D-16-34851
                10.1371/journal.pone.0178232
                5441644
                28542434
                bcb98e13-adc3-40a1-a163-c4105488b476
                © 2017 Nishikai-Yan Shen et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 14 September 2016
                : 3 May 2017
                Page count
                Figures: 8, Tables: 1, Pages: 19
                Funding
                Funded by: Japanese Ministry of Health, Labor, and Welfare
                Award ID: JSPS KAKENHI (Grant Number 26713051)
                This research is supported by the JSPS KAKENHI (Grants-in-Aid for Scientific Research) Grant Number 26713051 and MEXT-Supported Program for the Strategic Research Foundation at Private Universities.
                Categories
                Research Article
                Medicine and Health Sciences
                Endocrinology
                Endocrine Disorders
                Diabetes Mellitus
                Medicine and Health Sciences
                Metabolic Disorders
                Diabetes Mellitus
                Biology and life sciences
                Cell biology
                Signal transduction
                Cell signaling
                Signaling cascades
                MAPK signaling cascades
                Biology and Life Sciences
                Cell Biology
                Cellular Types
                Animal Cells
                Connective Tissue Cells
                Fibroblasts
                Biology and Life Sciences
                Anatomy
                Biological Tissue
                Connective Tissue
                Connective Tissue Cells
                Fibroblasts
                Medicine and Health Sciences
                Anatomy
                Biological Tissue
                Connective Tissue
                Connective Tissue Cells
                Fibroblasts
                Biology and Life Sciences
                Cell Biology
                Cellular Types
                Animal Cells
                Blood Cells
                White Blood Cells
                Macrophages
                Biology and Life Sciences
                Cell Biology
                Cellular Types
                Animal Cells
                Immune Cells
                White Blood Cells
                Macrophages
                Biology and Life Sciences
                Immunology
                Immune Cells
                White Blood Cells
                Macrophages
                Medicine and Health Sciences
                Immunology
                Immune Cells
                White Blood Cells
                Macrophages
                Biology and Life Sciences
                Physiology
                Physiological Processes
                Tissue Repair
                Wound Healing
                Medicine and Health Sciences
                Physiology
                Physiological Processes
                Tissue Repair
                Wound Healing
                Biology and Life Sciences
                Physiology
                Immune Physiology
                Cytokines
                Medicine and Health Sciences
                Physiology
                Immune Physiology
                Cytokines
                Biology and Life Sciences
                Immunology
                Immune System
                Innate Immune System
                Cytokines
                Medicine and Health Sciences
                Immunology
                Immune System
                Innate Immune System
                Cytokines
                Biology and Life Sciences
                Developmental Biology
                Molecular Development
                Cytokines
                Biology and Life Sciences
                Immunology
                Immune Response
                Inflammation
                Medicine and Health Sciences
                Immunology
                Immune Response
                Inflammation
                Medicine and Health Sciences
                Diagnostic Medicine
                Signs and Symptoms
                Inflammation
                Medicine and Health Sciences
                Pathology and Laboratory Medicine
                Signs and Symptoms
                Inflammation
                Research and Analysis Methods
                Experimental Organism Systems
                Model Organisms
                Mouse Models
                Research and Analysis Methods
                Model Organisms
                Mouse Models
                Research and Analysis Methods
                Experimental Organism Systems
                Animal Models
                Mouse Models
                Custom metadata
                All relevant data are within the paper and its Supporting Information files.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article