15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Roles for the CX3CL1/CX3CR1 and CCL2/CCR2 Chemokine Systems in Hypoxic Pulmonary Hypertension.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Monocytes/macrophages are major effectors of lung inflammation associated with various forms of pulmonary hypertension (PH). Interactions between the CCL2/CCR2 and CX3CL1/CX3CR1 chemokine systems that guide phagocyte infiltration are incompletely understood. Our objective was to explore the individual and combined actions of CCL2/CCR2 and CX3CL1/CX3CR1 in hypoxia-induced PH in mice; particularly their roles in monocyte trafficking, macrophage polarization, and pulmonary vascular remodeling. The development of hypoxia-induced PH was associated with marked increases in lung levels of CX3CR1, CCR2, and their respective ligands, CX3CL1 and CCL2. Flow cytometry revealed that both inflammatory Ly6C(hi) and resident Ly6C(lo) monocyte subsets exhibited sustained increases in blood and a transient peak in lung tissue, and that lung perivascular and alveolar macrophage counts showed sustained elevations. CX3CR1(-/-) mice were protected against hypoxic PH compared with wild-type mice, whereas CCL2(-/-) mice and double CX3CR1(-/-)/CCL2(-/-) mice exhibited similar PH severity, as did wild-type mice. The protective effects of CX3CR1 deficiency occurred concomitantly with increases in lung monocyte and macrophage counts and with a change from M2 to M1 macrophage polarization that markedly diminished the ability of conditioned media to induce pulmonary artery smooth muscle cell (PA-SMC) proliferation, which was partly dependent on CX3CL1 secretion. Results in mice given the CX3CR1 inhibitor F1 were similar to those in CX3CR1(-/-) mice. In conclusion, CX3CR1 deficiency protects against hypoxia-induced PH by modulating monocyte recruitment, macrophage polarization, and PA-SMC cell proliferation. Targeting CX3CR1 may hold promise for treating PH.

          Related collections

          Author and article information

          Journal
          Am. J. Respir. Cell Mol. Biol.
          American journal of respiratory cell and molecular biology
          American Thoracic Society
          1535-4989
          1044-1549
          May 2017
          : 56
          : 5
          Affiliations
          [1 ] INSERM U955 and Département de Physiologie, Hôpital Henri Mondor, Assistance Publique-Hôpitaux de Paris, Départements Hospitalo Universitaires Ageing Thorax-Vessels-Blood, 94010, Créteil, France; Université Paris-Est Créteil, France; and Sorbonne Universités, Université Pierre et Marie Curie-Université Paris 06, Inserm, UMRS1135, CNRS, Equipes de Recherche Labellisées 8255, Centre d'Immunologie et des Maladies Infectieuses, Paris, France.
          Article
          10.1165/rcmb.2016-0201OC
          28125278
          bcbbb427-b3cd-4716-8c13-1957e771df93
          History

          CX3CL1/CX3CR1 and CCL2/CCR2,chemokines,macrophages,monocytes,pulmonary hypertension

          Comments

          Comment on this article