50
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Pathobiological features of a novel, highly pathogenic avian influenza A(H5N8) virus

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The endemicity of highly pathogenic avian influenza (HPAI) A(H5N1) viruses in Asia has led to the generation of reassortant H5 strains with novel gene constellations. A newly emerged HPAI A(H5N8) virus caused poultry outbreaks in the Republic of Korea in 2014. Because newly emerging high-pathogenicity H5 viruses continue to pose public health risks, it is imperative that their pathobiological properties be examined. Here, we characterized A/mallard duck/Korea/W452/2014 (MDk/W452(H5N8)), a representative virus, and evaluated its pathogenic and pandemic potential in various animal models. We found that MDk/W452(H5N8), which originated from the reassortment of wild bird viruses harbored by migratory waterfowl in eastern China, replicated systemically and was lethal in chickens, but appeared to be attenuated, albeit efficiently transmitted, in ducks. Despite predominant attachment to avian-like virus receptors, MDk/W452(H5N8) also exhibited detectable human virus-like receptor binding and replicated in human respiratory tract tissues. In mice, MDk/W452(H5N8) was moderately pathogenic and had limited tissue tropism relative to previous HPAI A(H5N1) viruses. It also induced moderate nasal wash titers in inoculated ferrets; additionally, it was recovered in extrapulmonary tissues and one of three direct-contact ferrets seroconverted without shedding. Moreover, domesticated cats appeared to be more susceptible than dogs to virus infection. With their potential to become established in ducks, continued circulation of A(H5N8) viruses could alter the genetic evolution of pre-existing avian poultry strains. Overall, detailed virological investigation remains a necessity given the capacity of H5 viruses to evolve to cause human illness with few changes in the viral genome.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Human Infection with a Novel Avian-Origin Influenza A (H7N9) Virus

          New England Journal of Medicine, 368(20), 1888-1897
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Structure and receptor specificity of the hemagglutinin from an H5N1 influenza virus.

            The hemagglutinin (HA) structure at 2.9 angstrom resolution, from a highly pathogenic Vietnamese H5N1 influenza virus, is more related to the 1918 and other human H1 HAs than to a 1997 duck H5 HA. Glycan microarray analysis of this Viet04 HA reveals an avian alpha2-3 sialic acid receptor binding preference. Introduction of mutations that can convert H1 serotype HAs to human alpha2-6 receptor specificity only enhanced or reduced affinity for avian-type receptors. However, mutations that can convert avian H2 and H3 HAs to human receptor specificity, when inserted onto the Viet04 H5 HA framework, permitted binding to a natural human alpha2-6 glycan, which suggests a path for this H5N1 virus to gain a foothold in the human population.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Clinical and epidemiological characteristics of a fatal case of avian influenza A H10N8 virus infection: a descriptive study.

              Human infections with different avian influenza viruses--eg, H5N1, H9N2, and H7N9--have raised concerns about pandemic potential worldwide. We report the first human infection with a novel reassortant avian influenza A H10N8 virus. We obtained and analysed clinical, epidemiological, and virological data from a patient from Nanchang City, China. Tracheal aspirate specimens were tested for influenza virus and other possible pathogens by RT-PCR, viral culture, and sequence analyses. A maximum likelihood phylogenetic tree was constructed. A woman aged 73 years presented with fever and was admitted to hospital on Nov 30, 2013. She developed multiple organ failure and died 9 days after illness onset. A novel reassortant avian influenza A H10N8 virus was isolated from the tracheal aspirate specimen obtained from the patient 7 days after onset of illness. Sequence analyses revealed that all the genes of the virus were of avian origin, with six internal genes from avian influenza A H9N2 viruses. The aminoacid motif GlnSerGly at residues 226-228 of the haemagglutinin protein indicated avian-like receptor binding preference. A mixture of glutamic acid and lysine at residue 627 in PB2 protein--which is associated with mammalian adaptation--was detected in the original tracheal aspirate samples. The virus was sensitive to neuraminidase inhibitors. Sputum and blood cultures and deep sequencing analysis indicated no co-infection with bacteria or fungi. Epidemiological investigation established that the patient had visited a live poultry market 4 days before illness onset. The novel reassortant H10N8 virus obtained is distinct from previously reported H10N8 viruses. The virus caused human infection and could have been associated with the death of a patient. Emergency Research Project on human infection with avian influenza H7N9 virus, the National Basic Research Program of China, and the National Mega-projects for Infectious Diseases. Copyright © 2014 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Emerg Microbes Infect
                Emerg Microbes Infect
                Emerging Microbes & Infections
                Nature Publishing Group
                2222-1751
                October 2014
                22 October 2014
                1 October 2014
                : 3
                : 10
                : e75
                Affiliations
                [1 ]College of Medicine and Medical Research Institute, Chungbuk National University , Cheongju 361-763, Korea
                [2 ]Viral Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology , Daejeon 305-806, Korea
                [3 ]College of Veterinary Medicine, Chungbuk National University , Cheongju 361-763, Korea
                [4 ]SKKU Advanced Institute of Technology and Department of Chemical Engineering, Sungkyunkwan University , Suwon 440-746, Korea
                [5 ]Department of Advanced Fermentation Fusion Science & Technology, Kookmin University , Seoul 136-702, Korea
                [6 ]BioLeaders Corporation, Yongsandong, Yuseong-gu, Daejeon 305-500, Korea
                [7 ]College of Veterinary Medicine, Chungnam National University , Daejeon 305-764, Korea
                [8 ]Department of Infectious Diseases, St. Jude Children's Research Hospital , Memphis, TN 38105-3678, USA
                Author notes
                [*]

                These authors contributed equally to this work.

                Article
                emi201475
                10.1038/emi.2014.75
                4217095
                26038499
                bd266940-fb1e-49c5-8c88-2be99bff3390
                Copyright © 2014 Shanghai Shangyixun Cultural Communication Co., Ltd

                This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/

                History
                : 04 June 2014
                : 04 August 2014
                : 19 August 2014
                Categories
                Original Article

                avian influenza virus,genetic evolution,hpai a(h5n8),migratory waterfowl,reassortment

                Comments

                Comment on this article