10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Detection of Temperature Difference in Neuronal Cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          For a better understanding of the mechanisms behind cellular functions, quantification of the heterogeneity in an organism or cells is essential. Recently, the importance of quantifying temperature has been highlighted, as it correlates with biochemical reaction rates. Several methods for detecting intracellular temperature have recently been established. Here we develop a novel method for sensing temperature in living cells based on the imaging technique of fluorescence of quantum dots. We apply the method to quantify the temperature difference in a human derived neuronal cell line, SH-SY5Y. Our results show that temperatures in the cell body and neurites are different and thus suggest that inhomogeneous heat production and dissipation happen in a cell. We estimate that heterogeneous heat dissipation results from the characteristic shape of neuronal cells, which consist of several compartments formed with different surface-volume ratios. Inhomogeneous heat production is attributable to the localization of specific organelles as the heat source.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          Thermometry at the nanoscale.

          Non-invasive precise thermometers working at the nanoscale with high spatial resolution, where the conventional methods are ineffective, have emerged over the last couple of years as a very active field of research. This has been strongly stimulated by the numerous challenging requests arising from nanotechnology and biomedicine. This critical review offers a general overview of recent examples of luminescent and non-luminescent thermometers working at nanometric scale. Luminescent thermometers encompass organic dyes, QDs and Ln(3+)ions as thermal probes, as well as more complex thermometric systems formed by polymer and organic-inorganic hybrid matrices encapsulating these emitting centres. Non-luminescent thermometers comprise of scanning thermal microscopy, nanolithography thermometry, carbon nanotube thermometry and biomaterials thermometry. Emphasis has been put on ratiometric examples reporting spatial resolution lower than 1 micron, as, for instance, intracellular thermometers based on organic dyes, thermoresponsive polymers, mesoporous silica NPs, QDs, and Ln(3+)-based up-converting NPs and β-diketonate complexes. Finally, we discuss the challenges and opportunities in the development for highly sensitive ratiometric thermometers operating at the physiological temperature range with submicron spatial resolution.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Luminescence nanothermometry.

            The current status of luminescence nanothermometry is reviewed in detail. Based on the main parameters of luminescence including intensity, bandwidth, bandshape, polarization, spectral shift and lifetime, we initially describe and compare the different classes of luminescence nanothermometry. Subsequently, the various luminescent materials used in each case are discussed and the mechanisms at the root of the luminescence thermal sensitivity are described. The most important results obtained in each case are summarized and the advantages and disadvantages of these approaches are discussed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Comparison between proliferative and neuron-like SH-SY5Y cells as an in vitro model for Parkinson disease studies.

              The molecular mechanisms underlying the cellular lost found in the nigrostriatal pathway during the progression of Parkinson's disease (PD) are not completely understood. Human neuroblastoma cell line SH-SY5Y challenged with 6-hydroxydopamine (6-OHDA) has been widely used as an in vitro model for PD. Although this cell line differentiates to dopaminergic neuron-like cells in response to low serum and retinoic acid (RA) treatment, there are few studies investigating the differences between proliferative and RA-differentiated SH-SY5Y cells. Here we evaluate morphological and biochemical changes which occurs during the differentiation of SH-SY5Y cells, and their responsiveness to 6-OHDA toxicity. Exponentially growing SH-SY5Y cells were maintained with DMEM/F12 medium plus 10% of fetal bovine serum (FBS). Differentiation was triggered by the combination of 10 microM RA plus 1% of FBS during 4, 7 and 10 days in culture. We found that SH-SY5Y cells differentiated for 7 days show an increase immunocontent of several relevant neuronal markers with the concomitant decrease in non-differentiated cell marker. Moreover, cells became two-fold more sensitive to 6-OHDA toxicity during the differentiation process. Time course experiments showed loss of mitochondrial membrane potential triggered by 6-OHDA (mitochondrial dysfunction parameter), which firstly occurs in proliferative than neuron-like differentiated cells. This finding could be related to the increase in the immunocontent of the neuroprotective protein DJ-1 during differentiation. Our data suggest that SH-SY5Y cells differentiated by 7 days with the protocol described here represent a more suitable experimental model for studying the molecular and cellular mechanisms underlying the pathophysiology of PD. (c) 2010 Elsevier B.V. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                01 March 2016
                2016
                : 6
                : 22071
                Affiliations
                [1 ]Keio University, Department of Biosciences and Informatics , 3-14-1, Hiyoshi, Kohoku-Ward, Yokohama, 223-8522, Japan
                Author notes
                Article
                srep22071
                10.1038/srep22071
                4772094
                26925874
                bd451eec-16d0-4d48-877e-ab259772763a
                Copyright © 2016, Macmillan Publishers Limited

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 22 September 2015
                : 05 February 2016
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article