44
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Embryonic and post-embryonic development of the polyclad flatworm Maritigrella crozieri; implications for the evolution of spiralian life history traits

      research-article
      1 , 2 ,
      Frontiers in Zoology
      BioMed Central

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Planktonic life history stages of spiralians share some muscular, nervous and ciliary system characters in common. The distribution of these characters is patchy and can be interpreted either as the result of convergent evolution, or as the retention of primitive spiralian larval features. To understand the evolution of these characters adequate taxon sampling across the Spiralia is necessary. Polyclad flatworms are the only free-living Platyhelminthes that exhibit a continuum of developmental modes, with direct development at one extreme, and indirect development via a trochophore-like larval stage at the other. Here I present embryological and larval anatomical data from the indirect developing polyclad Maritrigrella crozieri, and consider these data within a comparative spiralian context.

          Results

          After 196 h hours of embryonic development, M. crozieri hatches as a swimming, planktotrophic larva. Larval myoanatomy consists of an orthogonal grid of circular and longitudinal body wall muscles plus parenchymal muscles. Diagonal body wall muscles develop over the planktonic period. Larval neuroanatomy consists of an apical plate, neuropile, paired nerve cords, a peri-oral nerve ring, a medial nerve, a ciliary band nerve net and putative ciliary photoreceptors. Apical neural elements develop first followed by posterior perikarya and later pharyngeal neural elements. The ciliated larva is encircled by a continuous, pre-oral band of longer cilia, which follows the distal margins of the lobes; it also possesses distinct apical and caudal cilia.

          Conclusions

          Within polyclads heterochronic shifts in the development of diagonal bodywall and pharyngeal muscles are correlated with life history strategies and feeding requirements. In contrast to many spiralians, M. crozieri hatch with well developed nervous and muscular systems. Comparisons of the ciliary bands and apical organs amongst spiralian planktonic life-stages reveal differences; M. crozieri lack a distinct ciliary band muscle and flask-shaped epidermal serotonergic cells of the apical organ. Based on current phylogenies, the distribution of ciliary bands and apical organs between polyclads and other spiralians is not congruent with a hypothesis of homology. However, some similarities exist, and this study sets an anatomical framework from which to investigate cellular and molecular mechanisms that will help to distinguish between parallelism, convergence and homology of these features.

          Related collections

          Most cited references69

          • Record: found
          • Abstract: found
          • Article: not found

          Ciliary photoreceptors with a vertebrate-type opsin in an invertebrate brain.

          For vision, insect and vertebrate eyes use rhabdomeric and ciliary photoreceptor cells, respectively. These cells show distinct architecture and transduce the light signal by different phototransductory cascades. In the marine rag-worm Platynereis, we find both cell types: rhabdomeric photoreceptor cells in the eyes and ciliary photoreceptor cells in the brain. The latter use a photopigment closely related to vertebrate rod and cone opsins. Comparative analysis indicates that both types of photoreceptors, with distinct opsins, coexisted in Urbilateria, the last common ancestor of insects and vertebrates, and sheds new light on vertebrate eye evolution.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Descent with modification: the unity underlying homology and homoplasy as seen through an analysis of development and evolution.

            Homology is at the foundation of comparative studies in biology at all levels from genes to phenotypes. Homology is similarity because of common descent and ancestry, homoplasy is similarity arrived at via independent evolution. However, given that there is but one tree of life, all organisms, and therefore all features of organisms, share some degree of relationship and similarity one to another. That sharing may be similarity or even identity of structure and the sharing of a most recent common ancestor--as in the homology of the arms of humans and apes--or it may reflect some (often small) degree of similarity, such as that between the wings of insects and the wings of birds, groups whose shared ancestor lies deep within the evolutionary history of the Metazoa. It may reflect sharing of entire developmental pathways, partial sharing, or divergent pathways. This review compares features classified as homologous with the classes of features normally grouped as homoplastic, the latter being convergence, parallelism, reversals, rudiments, vestiges, and atavisms. On the one hand, developmental mechanisms may be conserved, even when a complete structure does not form (rudiments, vestiges), or when a structure appears only in some individuals (atavisms). On the other hand, different developmental mechanisms can produce similar (homologous) features. Joint examination of nearness of relationship and degree of shared development reveals a continuum within an expanded category of homology, extending from homology --> reversals --> rudiments --> vestiges --> atavisms --> parallelism, with convergence as the only class of homoplasy, an idea that turns out to be surprisingly old. This realignment provides a glimmer of a way to bridge phylogenetic and developmental approaches to homology and homoplasy, a bridge that should provide a key pillar for evolutionary developmental biology (evo-devo). It will not, and in a practical sense cannot, alter how homoplastic features are identified in phylogenetic analyses. But seeing rudiments, reversals, vestiges, atavisms and parallelism as closer to homology than to homoplasy should guide us toward searching for the common elements underlying the formation of the phenotype (what some have called the deep homology of genetic and/or cellular mechanisms), rather than discussing features in terms of shared or independent evolution.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Utility of complete large and small subunit rRNA genes in resolving the phylogeny of the Neodermata (Platyhelminthes): implications and a review of the cercomer theory

                Bookmark

                Author and article information

                Journal
                Front Zool
                Frontiers in Zoology
                BioMed Central
                1742-9994
                2010
                28 April 2010
                : 7
                : 12
                Affiliations
                [1 ]Smithsonian Marine Station, 701 Seaway Drive, Fort Pierce, Florida, 34949 USA
                [2 ]Current address: Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
                Article
                1742-9994-7-12
                10.1186/1742-9994-7-12
                2876153
                20426837
                bd9920ee-05ec-41ab-8680-e0937139be01
                Copyright ©2010 Rawlinson; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 14 December 2009
                : 28 April 2010
                Categories
                Research

                Animal science & Zoology
                Animal science & Zoology

                Comments

                Comment on this article