14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Global diversity of Isopod crustaceans (Crustacea; Isopoda) in freshwater

      Hydrobiologia
      Springer Nature

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references20

          • Record: found
          • Abstract: found
          • Article: not found

          Nutrition in terrestrial isopods (Isopoda: Oniscidea): an evolutionary-ecological approach.

          The nutritional morphology, physiology and ecology of terrestrial isopods (Isopoda: Oniscidea) is significant in two respects. (1) Most oniscid isopods are truly terrestrial in terms of being totally independent of the aquatic environment. Thus, they have evolved adaptations to terrestrial food sources. (2) In many terrestrial ecosystems, isopods play an important role in decomposition processes through mechanical and chemical breakdown of plant litter and by enhancing microbial activity. While the latter aspect of nutrition is discussed only briefly in this review, I focus on the evolutionary ecology of feeding in terrestrial isopods. Due to their possessing chewing mouthparts, leaf litter is comminuted prior to being ingested, facilitating both enzymatic degradation during gut passage and microbial colonization of egested faeces. Digestion of food through endogenous enzymes produced in the caeca of the midgut glands (hepatopancreas) and through microbial enzymes, either ingested along with microbially colonized food or secreted by microbial endosymbionts, mainly takes place in the anterior part of the hindgut. Digestive processes include the activity of carbohydrases, proteases, dehydrogenases, esterases, lipases, arylamidases and oxidases, as well as the nutritional utilization of microbial cells. Absorption of nutrients is brought about by the hepatopancreas and/or the hindgut epithelium, the latter being also involved in osmoregulation and water balance. Minerals and metal cations are effectively extracted from the food, while overall assimilation efficiencies may be low. Heavy metals are stored in special organelles of the hepatopancreatic tissue. Nitrogenous waste products are excreted via ammonia in its gaseous form, with only little egested along with the faeces. Nonetheless, faeces are characterized by high nitrogen content and provide a favourable substrate for microbial colonization and growth. The presence of a dense microbial population on faecal material is one reason for the coprophagous behaviour of terrestrial isopods. For the same reason, terrestrial isopods prefer feeding on decaying rather than fresh leaf litter, the former also being more palatable and easier to digest. Acceptable food sources are detected through distance and contact chemoreceptors. The 'quality' of the food source determines individual growth, fecundity and mortality, and thus maintenance at the population level. Due to their physiological adaptations to feeding on and digesting leaf litter, terrestrial isopods contribute strongly to nutrient recycling during decomposition processes. Yet, many of these adaptations are still not well understood.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Higher classification of the flabelliferan and related Isopoda based on a reappraisal of relationships

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Phylogeography and molecular rates of subterranean aquatic Stenasellid Isopods with a peri-Tyrrhenian distribution.

              The subterranean Isopods belonging to the genus Stenasellus have an interesting disjunct distribution in the peri-Tyrrhenian area with morphologically closely related taxa occurring in Sardinia, Corsica, Tuscany and in the Pyrenees phreatic and interstitial waters. Because the dispersal capacities of these organisms are limited, their distribution has been associated traditionally with the tectonic events leading to the separation of the Sardinia-Corsica microplate from the Pyrenees and its subsequent movement towards the Italian peninsula. We sequenced a fragment of the mtDNA cytochrome oxidase I gene (COI) for multiple populations of the S. racovitzai species-group (Corsica, Sardinia, Tuscany) and S. virei (Pyrenees). We found that multiple phylogenetic analyses always gave the same topology, which is consistent with the genetic relations found using allozyme data, and with the palaeogeography of the area. The molecular data suggest that a combination of vicariance and dispersal events explain most effectively the present distribution pattern of these organisms. We also calculated COI rates and calibrated them against absolute time, taking advantage of the availability of two geologically based time estimates. Rates on all substitutions are similar to those published for other crustaceans for the same COI fragment, including taxonomically and ecologically distant groups. Rates on third codon positions or on transversions are generally lower than those found in other crustaceans.
                Bookmark

                Author and article information

                Journal
                Hydrobiologia
                Hydrobiologia
                Springer Nature
                0018-8158
                1573-5117
                January 2008
                December 2007
                : 595
                : 1
                : 231-240
                Article
                10.1007/s10750-007-9019-z
                bd9d9c88-4e94-4e4c-af31-e2f817da1e27
                © 2008
                History

                Comments

                Comment on this article