44
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Rational engineering of physicochemical properties of nanomaterials for biomedical applications with nanotoxicological perspectives

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Innovative engineered nanomaterials are at the leading edge of rapidly emerging fields of nanobiotechnology and nanomedicine. Meticulous synthesis, unique physicochemical properties, manifestation of chemical or biological moieties on the surface of materials make engineered nanostructures suitable for a variety of biomedical applications. Besides, tailored nanomaterials exhibit entirely novel therapeutic applications with better functionality, sensitivity, efficiency and specificity due to their customized unique physicochemical and surface properties. Additionally, such designer made nanomaterials has potential to generate series of interactions with various biological entities including DNA, proteins, membranes, cells and organelles at nano-bio interface. These nano-bio interactions are driven by colloidal forces and predominantly depend on the dynamic physicochemical and surface properties of nanomaterials. Nevertheless, recent development and atomic scale tailoring of various physical, chemical and surface properties of nanomaterials is promising to dictate their interaction in anticipated manner with biological entities for biomedical applications. As a result, rationally designed nanomaterials are in extensive demand for bio-molecular detection and diagnostics, therapeutics, drug and gene delivery, fluorescent labelling, tissue engineering, biochemical sensing and other pharmaceuticals applications. However, toxicity and risk associated with engineered nanomaterials is rather unclear or not well understood; which is gaining considerable attention and the field of nanotoxicology is evolving promptly. Therefore, this review explores current knowledge of articulate engineering of nanomaterials for biomedical applications with special attention on potential toxicological perspectives.

          Related collections

          Most cited references66

          • Record: found
          • Abstract: not found
          • Article: not found

          Chemistry and properties of nanocrystals of different shapes.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli.

            In this work we investigated the antibacterial properties of differently shaped silver nanoparticles against the gram-negative bacterium Escherichia coli, both in liquid systems and on agar plates. Energy-filtering transmission electron microscopy images revealed considerable changes in the cell membranes upon treatment, resulting in cell death. Truncated triangular silver nanoplates with a {111} lattice plane as the basal plane displayed the strongest biocidal action, compared with spherical and rod-shaped nanoparticles and with Ag(+) (in the form of AgNO(3)). It is proposed that nanoscale size and the presence of a {111} plane combine to promote this biocidal property. To our knowledge, this is the first comparative study on the bactericidal properties of silver nanoparticles of different shapes, and our results demonstrate that silver nanoparticles undergo a shape-dependent interaction with the gram-negative organism E. coli.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Nanoparticle-mediated cellular response is size-dependent.

              Nanostructures of different sizes, shapes and material properties have many applications in biomedical imaging, clinical diagnostics and therapeutics. In spite of what has been achieved so far, a complete understanding of how cells interact with nanostructures of well-defined sizes, at the molecular level, remains poorly understood. Here we show that gold and silver nanoparticles coated with antibodies can regulate the process of membrane receptor internalization. The binding and activation of membrane receptors and subsequent protein expression strongly depend on nanoparticle size. Although all nanoparticles within the 2-100 nm size range were found to alter signalling processes essential for basic cell functions (including cell death), 40- and 50-nm nanoparticles demonstrated the greatest effect. These results show that nanoparticles should no longer be viewed as simple carriers for biomedical applications, but can also play an active role in mediating biological effects. The findings presented here may assist in the design of nanoscale delivery and therapeutic systems and provide insights into nanotoxicity.
                Bookmark

                Author and article information

                Contributors
                navyapn@gmail.com
                hkdaima@jpr.amity.edu
                Journal
                Nano Converg
                Nano Converg
                Nano Convergence
                Korea Nano Technology Research Society (Seoul )
                2196-5404
                1 February 2016
                1 February 2016
                2016
                : 3
                : 1
                : 1
                Affiliations
                [1 ]Nano-Bio Interfacial Research Laboratory (NBIRL), Department of Biotechnology, Siddaganga Institute of Technology, Tumkur, 572103 Karnataka India
                [2 ]Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, 303007 Rajasthan India
                Article
                64
                10.1186/s40580-016-0064-z
                5271116
                28191411
                be55a881-4f93-402f-aa61-80b6592b3bba
                © Navya and Daima. 2016

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

                History
                : 20 April 2015
                : 23 July 2015
                Categories
                Review
                Custom metadata
                © Korea Nano Technology Research Society 2016

                rational design,nanomaterials,nanomedicine,physicochemical,nanotoxicology

                Comments

                Comment on this article