2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Plethora of functions packed into 45 kDa arrestins: biological implications and possible therapeutic strategies

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references82

          • Record: found
          • Abstract: found
          • Article: not found

          beta-Arrestin: a protein that regulates beta-adrenergic receptor function.

          Homologous or agonist-specific desensitization of beta-adrenergic receptors is thought to be mediated by a specific kinase, the beta-adrenergic receptor kinase (beta ARK). However, recent data suggest that a cofactor is required for this kinase to inhibit receptor function. The complementary DNA for such a cofactor was cloned and found to encode a 418-amino acid protein homologous to the retinal protein arrestin. The protein, termed beta-arrestin, was expressed and partially purified. It inhibited the signaling function of beta ARK-phosphorylated beta-adrenergic receptors by more than 75 percent, but not that of rhodopsin. It is proposed that beta-arrestin in concert with beta ARK effects homologous desensitization of beta-adrenergic receptors.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Role of beta-arrestin in mediating agonist-promoted G protein-coupled receptor internalization.

            beta-Arrestins are proteins that bind phosphorylated heterotrimeric GTP-binding protein (G protein)-coupled receptors (GPCRs) and contribute to the desensitization of GPCRs by uncoupling the signal transduction process. Resensitization of GPCR responsiveness involves agonist-mediated receptor sequestration. Overexpression of beta-arrestins in human embryonic kidney cells rescued the sequestration of beta 2-adrenergic receptor (beta 2AR) mutants defective in their ability to sequester, an effect enhanced by simultaneous overexpression of beta-adrenergic receptor kinase 1. Wild-type beta 2AR sequestration was inhibited by the overexpression of two beta-arrestin mutants. These findings suggest that beta-arrestins play an integral role in GPCR internalization and thus serve a dual role in the regulation of GPCR function.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              G protein-coupled receptor kinases: more than just kinases and not only for GPCRs.

              G protein-coupled receptor (GPCR) kinases (GRKs) are best known for their role in homologous desensitization of GPCRs. GRKs phosphorylate activated receptors and promote high affinity binding of arrestins, which precludes G protein coupling. GRKs have a multidomain structure, with the kinase domain inserted into a loop of a regulator of G protein signaling homology domain. Unlike many other kinases, GRKs do not need to be phosphorylated in their activation loop to achieve an activated state. Instead, they are directly activated by docking with active GPCRs. In this manner they are able to selectively phosphorylate Ser/Thr residues on only the activated form of the receptor, unlike related kinases such as protein kinase A. GRKs also phosphorylate a variety of non-GPCR substrates and regulate several signaling pathways via direct interactions with other proteins in a phosphorylation-independent manner. Multiple GRK subtypes are present in virtually every animal cell, with the highest expression levels found in neurons, with their extensive and complex signal regulation. Insufficient or excessive GRK activity was implicated in a variety of human disorders, ranging from heart failure to depression to Parkinson's disease. As key regulators of GPCR-dependent and -independent signaling pathways, GRKs are emerging drug targets and promising molecular tools for therapy. Targeted modulation of expression and/or of activity of several GRK isoforms for therapeutic purposes was recently validated in cardiac disorders and Parkinson's disease. Copyright © 2011 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Cellular and Molecular Life Sciences
                Cell. Mol. Life Sci.
                Springer Science and Business Media LLC
                1420-682X
                1420-9071
                November 2019
                August 17 2019
                November 2019
                : 76
                : 22
                : 4413-4421
                Article
                10.1007/s00018-019-03272-5
                31422444
                be6dc897-2f1c-4b76-a483-f3efc41f2d0d
                © 2019

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article