40
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Undersampled Critical Branching Processes on Small-World and Random Networks Fail to Reproduce the Statistics of Spike Avalanches

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The power-law size distributions obtained experimentally for neuronal avalanches are an important evidence of criticality in the brain. This evidence is supported by the fact that a critical branching process exhibits the same exponent . Models at criticality have been employed to mimic avalanche propagation and explain the statistics observed experimentally. However, a crucial aspect of neuronal recordings has been almost completely neglected in the models: undersampling. While in a typical multielectrode array hundreds of neurons are recorded, in the same area of neuronal tissue tens of thousands of neurons can be found. Here we investigate the consequences of undersampling in models with three different topologies (two-dimensional, small-world and random network) and three different dynamical regimes (subcritical, critical and supercritical). We found that undersampling modifies avalanche size distributions, extinguishing the power laws observed in critical systems. Distributions from subcritical systems are also modified, but the shape of the undersampled distributions is more similar to that of a fully sampled system. Undersampled supercritical systems can recover the general characteristics of the fully sampled version, provided that enough neurons are measured. Undersampling in two-dimensional and small-world networks leads to similar effects, while the random network is insensitive to sampling density due to the lack of a well-defined neighborhood. We conjecture that neuronal avalanches recorded from local field potentials avoid undersampling effects due to the nature of this signal, but the same does not hold for spike avalanches. We conclude that undersampled branching-process-like models in these topologies fail to reproduce the statistics of spike avalanches.

          Related collections

          Most cited references16

          • Record: found
          • Abstract: found
          • Article: not found

          Large-scale recording of neuronal ensembles.

          How does the brain orchestrate perceptions, thoughts and actions from the spiking activity of its neurons? Early single-neuron recording research treated spike pattern variability as noise that needed to be averaged out to reveal the brain's representation of invariant input. Another view is that variability of spikes is centrally coordinated and that this brain-generated ensemble pattern in cortical structures is itself a potential source of cognition. Large-scale recordings from neuronal ensembles now offer the opportunity to test these competing theoretical frameworks. Currently, wire and micro-machined silicon electrode arrays can record from large numbers of neurons and monitor local neural circuits at work. Achieving the full potential of massively parallel neuronal recordings, however, will require further development of the neuron-electrode interface, automated and efficient spike-sorting algorithms for effective isolation and identification of single neurons, and new mathematical insights for the analysis of network properties.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Spontaneous cortical activity in awake monkeys composed of neuronal avalanches.

            Spontaneous neuronal activity is an important property of the cerebral cortex but its spatiotemporal organization and dynamical framework remain poorly understood. Studies in reduced systems--tissue cultures, acute slices, and anesthetized rats--show that spontaneous activity forms characteristic clusters in space and time, called neuronal avalanches. Modeling studies suggest that networks with this property are poised at a critical state that optimizes input processing, information storage, and transfer, but the relevance of avalanches for fully functional cerebral systems has been controversial. Here we show that ongoing cortical synchronization in awake rhesus monkeys carries the signature of neuronal avalanches. Negative LFP deflections (nLFPs) correlate with neuronal spiking and increase in amplitude with increases in local population spike rate and synchrony. These nLFPs form neuronal avalanches that are scale-invariant in space and time and with respect to the threshold of nLFP detection. This dimension, threshold invariance, describes a fractal organization: smaller nLFPs are embedded in clusters of larger ones without destroying the spatial and temporal scale-invariance of the dynamics. These findings suggest an organization of ongoing cortical synchronization that is scale-invariant in its three fundamental dimensions--time, space, and local neuronal group size. Such scale-invariance has ontogenetic and phylogenetic implications because it allows large increases in network capacity without a fundamental reorganization of the system.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Critical branching captures activity in living neural networks and maximizes the number of metastable States.

              Recent experimental work has shown that activity in living neural networks can propagate as a critical branching process that revisits many metastable states. Neural network theory suggests that attracting states could store information, but little is known about how a branching process could form such states. Here we use a branching process to model actual data and to explore metastable states in the network. When we tune the branching parameter to the critical point, we find that metastable states are most numerous and that network dynamics are not attracting, but neutral.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2014
                21 April 2014
                : 9
                : 4
                : e94992
                Affiliations
                [1 ]Physics Department, Federal University of Pernambuco (UFPE), Recife, Pernambuco, Brasil
                [2 ]Brain Institute, Federal University of Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte, Brasil
                University of Michigan, United States of America
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: SR. Performed the experiments: SR HB FC. Analyzed the data: TLR MC. Contributed reagents/materials/analysis tools: TLR SR HB FC MC. Wrote the paper: TLR SR MC.

                Article
                PONE-D-13-54162
                10.1371/journal.pone.0094992
                3994033
                24751599
                be783bea-103f-46fe-9801-bd8576b57aa9
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 23 December 2013
                : 19 March 2014
                Page count
                Pages: 10
                Funding
                Work supported by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Financiadora de Estudos e Projetos (FINEP) grant 01.06.1092.00, Pró-Reitoria de Pós-Graduação da Universidade Federal do Rio Grande do Norte (UFRN), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)/Ministério da Ciência, Tecnologia e Inovação (MCTI), CNPq Universal Grants 481351/2011-6, 473554/2011-9 and 480053/2013-8, Programa de Apoio a Núcleos Emergentes PRONEM 003/2011 FAPERN/CNPq and PRONEM 12/2010 FACEPE/CNPq, Pew Latin American Fellows Program in the Biomedical Sciences, and Centro de Pesquisa, Inovação e Difusão (CEPID-Neuromat). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Computational Biology
                Computational Neuroscience
                Neuroscience
                Physical Sciences
                Mathematics
                Probability Theory
                Statistical Distributions
                Distribution Curves
                Physics
                Condensed Matter Physics
                Phase Transitions
                Interdisciplinary Physics

                Uncategorized
                Uncategorized

                Comments

                Comment on this article