3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Persistent Purine Metabolic Abnormality Induces the Aggravation of Visceral Inflammation and Intestinal Microbiota Dysbiosis in Magang Goose

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Gout is a disease involving abnormal purine metabolism that is widespread in mammals and birds. Goose is especially susceptible for gout in early stage. However, a few studies investigated the ontogenetic pattern of goslings with purine metabolic abnormality. Our studies were conducted to investigate whether persistent purine metabolic abnormality would lead to aggravation of visceral inflammation and intestinal microbiota dysbiosis in goose. A total of 132 1-day-old Magang geese were randomly divided into six replicates and fed a high-calcium and protein meal-based diet from 1 to 28 days. The experiment lasted for 28 days. Liver and kidney damages were observed in 14- and 28-day-old Magang geese, and liver inflammation increased with increasing age. In 28-day-old Magang geese, serum CAT and liver GSH-Px activity were significantly reduced. Furthermore, jejunum intestinal barrier was impaired and the abundance of Bacteroides was significantly reduced at the genus level. Collectively, the high-calcium and high-protein (HCP) meal-based diet caused liver and kidney damage in 28-day-old Magang geese, leading to hyperuricemia and gout symptoms, and the intestinal barrier is impaired and the intestinal flora is disrupted.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          An obesity-associated gut microbiome with increased capacity for energy harvest.

          The worldwide obesity epidemic is stimulating efforts to identify host and environmental factors that affect energy balance. Comparisons of the distal gut microbiota of genetically obese mice and their lean littermates, as well as those of obese and lean human volunteers have revealed that obesity is associated with changes in the relative abundance of the two dominant bacterial divisions, the Bacteroidetes and the Firmicutes. Here we demonstrate through metagenomic and biochemical analyses that these changes affect the metabolic potential of the mouse gut microbiota. Our results indicate that the obese microbiome has an increased capacity to harvest energy from the diet. Furthermore, this trait is transmissible: colonization of germ-free mice with an 'obese microbiota' results in a significantly greater increase in total body fat than colonization with a 'lean microbiota'. These results identify the gut microbiota as an additional contributing factor to the pathophysiology of obesity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Microbial ecology: human gut microbes associated with obesity.

            Two groups of beneficial bacteria are dominant in the human gut, the Bacteroidetes and the Firmicutes. Here we show that the relative proportion of Bacteroidetes is decreased in obese people by comparison with lean people, and that this proportion increases with weight loss on two types of low-calorie diet. Our findings indicate that obesity has a microbial component, which might have potential therapeutic implications.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Intestinal Microbiota Distinguish Gout Patients from Healthy Humans

              Current blood-based approach for gout diagnosis can be of low sensitivity and hysteretic. Here via a 68-member cohort of 33 healthy and 35 diseased individuals, we reported that the intestinal microbiota of gout patients are highly distinct from healthy individuals in both organismal and functional structures. In gout, Bacteroides caccae and Bacteroides xylanisolvens are enriched yet Faecalibacterium prausnitzii and Bifidobacterium pseudocatenulatum depleted. The established reference microbial gene catalogue for gout revealed disorder in purine degradation and butyric acid biosynthesis in gout patients. In an additional 15-member validation-group, a diagnosis model via 17 gout-associated bacteria reached 88.9% accuracy, higher than the blood-uric-acid based approach. Intestinal microbiota of gout are more similar to those of type-2 diabetes than to liver cirrhosis, whereas depletion of Faecalibacterium prausnitzii and reduced butyrate biosynthesis are shared in each of the metabolic syndromes. Thus the Microbial Index of Gout was proposed as a novel, sensitive and non-invasive strategy for diagnosing gout via fecal microbiota.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Vet Sci
                Front Vet Sci
                Front. Vet. Sci.
                Frontiers in Veterinary Science
                Frontiers Media S.A.
                2297-1769
                06 September 2021
                2021
                : 8
                : 737160
                Affiliations
                [1] 1Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University , Guangzhou, China
                [2] 2Shantou Baisha Research Institute of Origin Species of Poultry and Stock , Shantou, China
                [3] 3Microbiome Research Center, Moon (Guangzhou) Biotech Co., Ltd. , Guangzhou, China
                [4] 4Cofco Feed (Foshan) Co., Ltd. , Foshan, China
                [5] 5Gold Coin Feedmill (Dong Guan) Co., Ltd. , Dongguan, China
                Author notes

                Edited by: Shourong Shi, Poultry Institute, Chinese Academy of Agricultural Sciences (CAAS), China

                Reviewed by: Guitao Jiang, Hunan Institute of Animal Husbandry and Veterinary Medicine, China; Jianhua He, Hunan Agricultural University, China

                *Correspondence: Zhenping Lin linzp02@ 123456163.com

                This article was submitted to Animal Nutrition and Metabolism, a section of the journal Frontiers in Veterinary Science

                †These authors have contributed equally to this work

                Article
                10.3389/fvets.2021.737160
                8452157
                34552978
                be972ced-4f50-4864-b9d6-857e339695f1
                Copyright © 2021 Ma, Zhou, Li, Xia, Chen, Chen, Jiang, Qin, Zhao, Zhang, Wang, Fu, Zhu, Jiang, Ye, Zhu, Lin, Wang and Yang.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 06 July 2021
                : 03 August 2021
                Page count
                Figures: 6, Tables: 2, Equations: 1, References: 51, Pages: 12, Words: 7312
                Categories
                Veterinary Science
                Original Research

                purine metabolic,gout,visceral inflammation,intestinal microbiota,magang goose

                Comments

                Comment on this article