1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Phenotypic and Genetic Analysis of KPC-49, a KPC-2 Variant Conferring Resistance to Ceftazidime–Avibactam and Maintaining Resistance to Imipenem and Meropenem

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose

          Klebsiella pneumoniae, a gram-negative bacterium, poses a severe hazard to public health, with many bacterial hosts having developed resistance to most antibiotics in clinical use. The goal of this study was to look into the development of resistance to both ceftazidime–avibactam and carbapenems, including imipenem and meropenem, in a K. pneumonia strain expressing a novel K. pneumoniae carbapenemase-2 (KPC-2) variant, referred to as KPC-49.

          Methods

          After 1 day of incubation of K1 on agar containing ceftazidime–avibactam (MIC = 16/4 mg/L), a second KPC-producing K. pneumoniae strain (K2) was recovered. Antimicrobial susceptibility assays, cloning assays, and whole genome sequencing were performed to analyse and evaluate antibiotic resistance phenotypes and genotypes.

          Results

          K. pneumoniae strain (K1), that produced KPC-2, was susceptible to ceftazidime–avibactam but resistant to carbapenems. The K2 isolate harboured a novel bla KPC-49 variant, which differs from bla KPC-2 by a single nucleotide (C487A), and results in an arginine-serine substitution at amino acid position 163 (R163S). The mutant K2 strain was resistant to both ceftazidime–avibactam and carbapenems. We demonstrated the ability of KPC-49 to hydrolyse carbapenems, which may be attributed to high KPC-49 expression or presence of an efflux pump and/or absence of membrane pore proteins in K2. Furthermore, bla KPC-like was carried on an IncFII (pHN7A8)/IncR-type plasmid within a Tn As1-orf-orf-orf-orf-orf-orf-IS Kpn6-bla KPC-IS Kpn27 structure. The bla KPC-like gene was flanked by various insertion sequences and transposon elements, including the Tn3 family transposon, such as Tn As1, Tn As3, IS 26, and IS 481-IS Kpn27.

          Conclusion

          New KPC variants are emerging owing to sustained exposure to antimicrobials and modifications in their amino acid sequences. We demonstrated the drug resistance mechanisms of the new mutant strains through experimental whole genome sequencing combined with bioinformatics analysis. Enhanced understanding of laboratory and clinical features of infections due to K. pneumoniae of the new KPC subtype is key to early and accurate anti-infective therapy.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Pilon: An Integrated Tool for Comprehensive Microbial Variant Detection and Genome Assembly Improvement

          Advances in modern sequencing technologies allow us to generate sufficient data to analyze hundreds of bacterial genomes from a single machine in a single day. This potential for sequencing massive numbers of genomes calls for fully automated methods to produce high-quality assemblies and variant calls. We introduce Pilon, a fully automated, all-in-one tool for correcting draft assemblies and calling sequence variants of multiple sizes, including very large insertions and deletions. Pilon works with many types of sequence data, but is particularly strong when supplied with paired end data from two Illumina libraries with small e.g., 180 bp and large e.g., 3–5 Kb inserts. Pilon significantly improves draft genome assemblies by correcting bases, fixing mis-assemblies and filling gaps. For both haploid and diploid genomes, Pilon produces more contiguous genomes with fewer errors, enabling identification of more biologically relevant genes. Furthermore, Pilon identifies small variants with high accuracy as compared to state-of-the-art tools and is unique in its ability to accurately identify large sequence variants including duplications and resolve large insertions. Pilon is being used to improve the assemblies of thousands of new genomes and to identify variants from thousands of clinically relevant bacterial strains. Pilon is freely available as open source software.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation

            Long-read single-molecule sequencing has revolutionized de novo genome assembly and enabled the automated reconstruction of reference-quality genomes. However, given the relatively high error rates of such technologies, efficient and accurate assembly of large repeats and closely related haplotypes remains challenging. We address these issues with Canu, a successor of Celera Assembler that is specifically designed for noisy single-molecule sequences. Canu introduces support for nanopore sequencing, halves depth-of-coverage requirements, and improves assembly continuity while simultaneously reducing runtime by an order of magnitude on large genomes versus Celera Assembler 8.2. These advances result from new overlapping and assembly algorithms, including an adaptive overlapping strategy based on tf-idf weighted MinHash and a sparse assembly graph construction that avoids collapsing diverged repeats and haplotypes. We demonstrate that Canu can reliably assemble complete microbial genomes and near-complete eukaryotic chromosomes using either Pacific Biosciences (PacBio) or Oxford Nanopore technologies and achieves a contig NG50 of >21 Mbp on both human and Drosophila melanogaster PacBio data sets. For assembly structures that cannot be linearly represented, Canu provides graph-based assembly outputs in graphical fragment assembly (GFA) format for analysis or integration with complementary phasing and scaffolding techniques. The combination of such highly resolved assembly graphs with long-range scaffolding information promises the complete and automated assembly of complex genomes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              ISfinder: the reference centre for bacterial insertion sequences

              ISfinder () is a dedicated database for bacterial insertion sequences (ISs). It has superseded the Stanford reference center. One of its functions is to assign IS names and to provide a focal point for a coherent nomenclature. It is also the repository for ISs. Each new IS is indexed together with information such as its DNA sequence and open reading frames or potential coding sequences, the sequence of the ends of the element and target sites, its origin and distribution together with a bibliography where available. Another objective is to continuously monitor ISs to provide updated comprehensive groupings or families and to provide some insight into their phylogenies. The site also contains extensive background information on ISs and transposons in general. Online tools are gradually being added. At present an online Blast facility against the entire bank is available. But additional features will include alignment capability, PsiBLAST and HMM profiles. ISfinder also includes a section on bacterial genomes and is involved in annotating the IS content of these genomes. Finally, this database is currently recommended by several microbiology journals for registration of new IS elements before their publication.
                Bookmark

                Author and article information

                Journal
                Infect Drug Resist
                Infect Drug Resist
                idr
                Infection and Drug Resistance
                Dove
                1178-6973
                27 April 2023
                2023
                : 16
                : 2477-2485
                Affiliations
                [1 ]Clinical Laboratory, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital) , Qingdao, Shandong, People’s Republic of China
                Author notes
                Correspondence: Jiangshui Yuan; Weiqing Song, Clinical Laboratory, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital) , Qingdao, Shandong, People’s Republic of China, Tel +86-0532-6602-7876, Email yjs19790104@163.com; songweiqing68@163.com
                Article
                406319
                10.2147/IDR.S406319
                10150759
                bea4c816-791a-456f-97f4-ced194b071dc
                © 2023 Yu et al.

                This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms ( https://www.dovepress.com/terms.php).

                History
                : 29 January 2023
                : 18 April 2023
                Page count
                Figures: 2, Tables: 1, References: 44, Pages: 9
                Funding
                Funded by: T;
                Funded by: his work was funded by Qingdao Municipal Clinical Laboratory key specialty;
                This work was funded by Qingdao Municipal Clinical Laboratory key specialty.
                Categories
                Original Research

                Infectious disease & Microbiology
                kpc,antibiotic resistance,whole genome sequencing,ceftazidime–avibactam,susceptibility testing

                Comments

                Comment on this article