44
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Ubiquitin E3 Ligase Ring1b/Rnf2 of Polycomb Repressive Complex 1 Contributes to Stable Maintenance of Mouse Embryonic Stem Cells

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Polycomb repressive complex 1 (PRC1) core member Ring1b/Rnf2, with ubiquitin E3 ligase activity towards histone H2A at lysine 119, is essential for early embryogenesis. To obtain more insight into the role of Ring1b in early development, we studied its function in mouse embryonic stem (ES) cells.

          Methodology/Principal Findings

          We investigated the effects of Ring1b ablation on transcriptional regulation using Ring1b conditional knockout ES cells and large-scale gene expression analysis. The absence of Ring1b results in aberrant expression of key developmental genes and deregulation of specific differentiation-related pathways, including TGFbeta signaling, cell cycle regulation and cellular communication. Moreover, ES cell markers, including Zfp42/ Rex-1 and Sox2, are downregulated. Importantly, retained expression of ES cell regulators Oct4, Nanog and alkaline phosphatase indicates that Ring1b-deficient ES cells retain important ES cell specific characteristics. Comparative analysis of our expression profiling data with previously published global binding studies shows that the genes that are bound by Ring1b in ES cells have bivalent histone marks, i.e. both active H3K4me3 and repressive H3K27me3, or the active H3K4me3 histone mark alone and are associated with CpG-‘rich’ promoters. However, deletion of Ring1b results in deregulation, mainly derepression, of only a subset of these genes, suggesting that additional silencing mechanisms are involved in repression of the other Ring1b bound genes in ES cells.

          Conclusions

          Ring1b is essential to stably maintain an undifferentiated state of mouse ES cells by repressing genes with important roles during differentiation and development. These genes are characterized by high CpG content promoters and bivalent histone marks or the active H3K4me3 histone mark alone.

          Related collections

          Most cited references54

          • Record: found
          • Abstract: not found
          • Article: not found

          Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation.

          Y. H. Yang (2002)
          There are many sources of systematic variation in cDNA microarray experiments which affect the measured gene expression levels (e.g. differences in labeling efficiency between the two fluorescent dyes). The term normalization refers to the process of removing such variation. A constant adjustment is often used to force the distribution of the intensity log ratios to have a median of zero for each slide. However, such global normalization approaches are not adequate in situations where dye biases can depend on spot overall intensity and/or spatial location within the array. This article proposes normalization methods that are based on robust local regression and account for intensity and spatial dependence in dye biases for different types of cDNA microarray experiments. The selection of appropriate controls for normalization is discussed and a novel set of controls (microarray sample pool, MSP) is introduced to aid in intensity-dependent normalization. Lastly, to allow for comparisons of expression levels across slides, a robust method based on maximum likelihood estimation is proposed to adjust for scale differences among slides.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Establishment in culture of pluripotential cells from mouse embryos.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells.

              Embryonic stem (ES) cells undergo extended proliferation while remaining poised for multilineage differentiation. A unique network of transcription factors may characterize self-renewal and simultaneously suppress differentiation. We applied expression cloning in mouse ES cells to isolate a self-renewal determinant. Nanog is a divergent homeodomain protein that directs propagation of undifferentiated ES cells. Nanog mRNA is present in pluripotent mouse and human cell lines, and absent from differentiated cells. In preimplantation embryos, Nanog is restricted to founder cells from which ES cells can be derived. Endogenous Nanog acts in parallel with cytokine stimulation of Stat3 to drive ES cell self-renewal. Elevated Nanog expression from transgene constructs is sufficient for clonal expansion of ES cells, bypassing Stat3 and maintaining Oct4 levels. Cytokine dependence, multilineage differentiation, and embryo colonization capacity are fully restored upon transgene excision. These findings establish a central role for Nanog in the transcription factor hierarchy that defines ES cell identity.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2008
                21 May 2008
                : 3
                : 5
                : e2235
                Affiliations
                [1 ]Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
                [2 ]Center for Biomedical Genetics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
                [3 ]Bioinformatics and Statistics, Division of Molecular Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
                [4 ]Department of Molecular Genetics, Maastricht University Medical Centre, Maastricht, The Netherlands
                [5 ]Department of Neurogenetics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
                Texas Tech University Health Sciences Center, United States of America
                Author notes

                Conceived and designed the experiments: Mv EB Pv JV. Performed the experiments: EB SN MH Pv DH JV. Analyzed the data: LW RK EB MH Pv. Wrote the paper: Mv Pv.

                Article
                08-PONE-RA-03623R1
                10.1371/journal.pone.0002235
                2375055
                18493325
                bfa9f540-0a8c-4aab-aafb-d9855f751cc3
                van der Stoop et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 13 February 2008
                : 28 March 2008
                Page count
                Pages: 14
                Categories
                Research Article
                Cell Biology/Gene Expression
                Developmental Biology/Cell Differentiation
                Developmental Biology/Stem Cells
                Genetics and Genomics/Epigenetics
                Genetics and Genomics/Gene Expression
                Molecular Biology/Histone Modification

                Uncategorized
                Uncategorized

                Comments

                Comment on this article