7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Sticks and Stones, a conserved cell surface ligand for the Type IIa RPTP Lar, regulates neural circuit wiring in Drosophila

      Preprint
      , ,
      bioRxiv

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Control of tyrosine phosphorylation is an essential element of many cellular processes, including proliferation, differentiation neurite outgrowth, and synaptogenesis. Receptor-like protein-tyrosine phosphatases (RPTPs) have cytoplasmic phosphatase domains and cell adhesion molecule (CAM)-like extracellular domains that interact with cell-surface ligands and/or co-receptors. We identified a new ligand for the Drosophila Lar RPTP, the immunoglobulin superfamily CAM Sticks and Stones (Sns). Lar is orthologous to the three Type IIa mammalian RPTPs, PTPRF (LAR), PTPRD (PTPδ), and PTPRS (PTPσ). Lar and Sns bind to each other in embryos and in vitro. The human Sns ortholog, Nephrin, binds to PTPRD and PTPRF. Genetic interaction studies show that Sns is essential to Lar’s functions in several developmental contexts in the larval and adult nervous systems. In the larval neuromuscular system, Lar and sns transheterozygotes ( Lar/sns transhets) have synaptic defects like those seen in Lar mutants and Sns knockdown animals. Lar and Sns reporters are both expressed in motor neurons and not in muscles, so Lar and Sns likely act in cis (in the same neurons). Lar mutants and Lar/ sns transhets have identical axon guidance defects in the larval mushroom body in which Kenyon cell axons fail to stop at the midline and do not branch. Pupal Kenyon cell axon guidance is similarly affected, resulting in adult mushroom body defects. Lar is expressed in larval and pupal Kenyon cells, but Sns is not, so Lar-Sns interactions in this system must be in trans (between neurons). Lastly, R7 photoreceptor axons in Lar mutants and Lar/sns transhets fail to innervate the correct M6 layer of the medulla in the optic lobe. Lar acts cell-autonomously in R7s, while Sns is only in lamina and medulla neurons that arborize near the R7 target layer. Therefore, the Lar-Sns interactions that control R7 targeting also occur in trans.

          Related collections

          Author and article information

          Journal
          bioRxiv
          November 05 2020
          Article
          10.1101/2020.11.03.367540
          bfcf74d4-d366-4300-af1d-7d583256c9ca
          © 2020
          History

          Molecular medicine,Neurosciences
          Molecular medicine, Neurosciences

          Comments

          Comment on this article