10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      New Methods for the Comprehensive Analysis of Bioactive Compounds in Cannabis sativa L. (hemp)

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cannabis sativa L. is a dioecious plant belonging to the Cannabaceae family. The main phytochemicals that are found in this plant are represented by cannabinoids, flavones, and terpenes. Some biological activities of cannabinoids are known to be enhanced by the presence of terpenes and flavonoids in the extracts, due to a synergistic action. In the light of all the above, the present study was aimed at the multi-component analysis of the bioactive compounds present in fibre-type C. sativa (hemp) inflorescences of different varieties by means of innovative HPLC and GC methods. In particular, the profiling of non-psychoactive cannabinoids was carried out by means of HPLC-UV/DAD, ESI-MS, and MS 2. The content of prenylated flavones in hemp extracts, including cannflavins A and B, was also evaluated by HPLC. The study on Cannabis volatile compounds was performed by developing a new method based on headspace solid-phase microextraction (HS-SPME) coupled with GC-MS and GC-FID. Cannabidiolic acid (CBDA) and cannabidiol (CBD) were found to be the most abundant cannabinoids in the hemp samples analysed, while β-myrcene and β-caryophyllene were the major terpenes. As regards flavonoids, cannflavin A was observed to be the main compound in almost all the samples. The methods developed in this work are suitable for the comprehensive chemical analysis of both hemp plant material and related pharmaceutical or nutraceutical products in order to ensure their quality, efficacy, and safety.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Taming THC: potential cannabis synergy and phytocannabinoid-terpenoid entourage effects.

          Tetrahydrocannabinol (THC) has been the primary focus of cannabis research since 1964, when Raphael Mechoulam isolated and synthesized it. More recently, the synergistic contributions of cannabidiol to cannabis pharmacology and analgesia have been scientifically demonstrated. Other phytocannabinoids, including tetrahydrocannabivarin, cannabigerol and cannabichromene, exert additional effects of therapeutic interest. Innovative conventional plant breeding has yielded cannabis chemotypes expressing high titres of each component for future study. This review will explore another echelon of phytotherapeutic agents, the cannabis terpenoids: limonene, myrcene, α-pinene, linalool, β-caryophyllene, caryophyllene oxide, nerolidol and phytol. Terpenoids share a precursor with phytocannabinoids, and are all flavour and fragrance components common to human diets that have been designated Generally Recognized as Safe by the US Food and Drug Administration and other regulatory agencies. Terpenoids are quite potent, and affect animal and even human behaviour when inhaled from ambient air at serum levels in the single digits ng·mL(-1) . They display unique therapeutic effects that may contribute meaningfully to the entourage effects of cannabis-based medicinal extracts. Particular focus will be placed on phytocannabinoid-terpenoid interactions that could produce synergy with respect to treatment of pain, inflammation, depression, anxiety, addiction, epilepsy, cancer, fungal and bacterial infections (including methicillin-resistant Staphylococcus aureus). Scientific evidence is presented for non-cannabinoid plant components as putative antidotes to intoxicating effects of THC that could increase its therapeutic index. Methods for investigating entourage effects in future experiments will be proposed. Phytocannabinoid-terpenoid synergy, if proven, increases the likelihood that an extensive pipeline of new therapeutic products is possible from this venerable plant. http://dx.doi.org/10.1111/bph.2011.163.issue-7. © 2011 The Author. British Journal of Pharmacology © 2011 The British Pharmacological Society.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Cannabis sativa: The Plant of the Thousand and One Molecules

            Cannabis sativa L. is an important herbaceous species originating from Central Asia, which has been used in folk medicine and as a source of textile fiber since the dawn of times. This fast-growing plant has recently seen a resurgence of interest because of its multi-purpose applications: it is indeed a treasure trove of phytochemicals and a rich source of both cellulosic and woody fibers. Equally highly interested in this plant are the pharmaceutical and construction sectors, since its metabolites show potent bioactivities on human health and its outer and inner stem tissues can be used to make bioplastics and concrete-like material, respectively. In this review, the rich spectrum of hemp phytochemicals is discussed by putting a special emphasis on molecules of industrial interest, including cannabinoids, terpenes and phenolic compounds, and their biosynthetic routes. Cannabinoids represent the most studied group of compounds, mainly due to their wide range of pharmaceutical effects in humans, including psychotropic activities. The therapeutic and commercial interests of some terpenes and phenolic compounds, and in particular stilbenoids and lignans, are also highlighted in view of the most recent literature data. Biotechnological avenues to enhance the production and bioactivity of hemp secondary metabolites are proposed by discussing the power of plant genetic engineering and tissue culture. In particular two systems are reviewed, i.e., cell suspension and hairy root cultures. Additionally, an entire section is devoted to hemp trichomes, in the light of their importance as phytochemical factories. Ultimately, prospects on the benefits linked to the use of the -omics technologies, such as metabolomics and transcriptomics to speed up the identification and the large-scale production of lead agents from bioengineered Cannabis cell culture, are presented.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Chemical constituents of marijuana: the complex mixture of natural cannabinoids.

              The cannabis plant (Cannabis sativa L.) and products thereof (such as marijuana, hashish and hash oil) have a long history of use both as a medicinal agent and intoxicant. Over the last few years there have been an active debate regarding the medicinal aspects of cannabis. Currently cannabis products are classified as Schedule I drugs under the Drug Enforcement Administration (DEA) Controlled Substances act, which means that the drug is only available for human use as an investigational drug. In addition to the social aspects of the use of the drug and its abuse potential, the issue of approving it as a medicine is further complicated by the complexity of the chemical make up of the plant. This manuscript discusses the chemical constituents of the plant with particular emphasis on the cannabinoids as the class of compounds responsible for the drug's psychological properties.
                Bookmark

                Author and article information

                Journal
                Molecules
                Molecules
                molecules
                Molecules : A Journal of Synthetic Chemistry and Natural Product Chemistry
                MDPI
                1420-3049
                14 October 2018
                October 2018
                : 23
                : 10
                : 2639
                Affiliations
                [1 ]Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy; virginia.brighenti@ 123456unimore.it (V.B.); johanna.sperlea@ 123456ernaehrung.uni-giessen.de (J.S.); lucia.marchetti@ 123456unimore.it (L.M.); davide.bertelli@ 123456unimore.it (D.B.); stefania.benvenuti@ 123456unimore.it (S.B.)
                [2 ]Faculty of Agricultural Sciences, Nutritional Sciences, and Environmental Management, Justus-Liebig University of Giessen, Goethestrasse 58, 35390 Giessen, Germany
                Author notes
                [* ]Correspondence: federica.pellati@ 123456unimore.it ; Tel.: +39-059-2058565
                Author information
                https://orcid.org/0000-0002-9822-6862
                https://orcid.org/0000-0003-4793-8795
                Article
                molecules-23-02639
                10.3390/molecules23102639
                6222702
                30322208
                c0161ee1-8656-4b35-bfc1-b3ea037149e2
                © 2018 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 21 September 2018
                : 12 October 2018
                Categories
                Article

                cannabis sativa l.,hemp,cannabinoids,flavonoids,terpenes,hplc,gc,ms.
                cannabis sativa l., hemp, cannabinoids, flavonoids, terpenes, hplc, gc, ms.

                Comments

                Comment on this article