31
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Drug Design, Development and Therapy (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on the design and development of drugs, as well as the clinical outcomes, patient safety, and programs targeted at the effective and safe use of medicines. Sign up for email alerts here.

      88,007 Monthly downloads/views I 4.319 Impact Factor I 6.6 CiteScore I 1.12 Source Normalized Impact per Paper (SNIP) I 0.784 Scimago Journal & Country Rank (SJR)

       

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Development of oral dispersible tablets containing prednisolone nanoparticles for the management of pediatric asthma

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The purpose of the present study was to develop oral dispersible tablets containing prednisolone (PDS)-loaded chitosan nanoparticles using microcrystalline cellulose (MCC 101), lactose, and croscarmellose sodium (CCS). The PDS-loaded chitosan nanoparticles were formulated by ionotropic external gelation technique in order to enhance the solubility of PDS in salivary pH. Prepared nanoparticles were used for the development of oral fast disintegrating tablets by direct compression method. The prepared tablets were evaluated for disintegration time (DT), in vitro drug release (DR), thickness, weight variation, drug content uniformity, friability, and hardness. The effect of concentrations of the dependent variables (MCC, lactose, CCS) on DT and in vitro DR was studied. Fast disintegrating tablets of PDS can be prepared by using MCC, CCS, and lactose with enhanced solubility of PDS. The minimum DT was found to be 15 seconds, and the maximum DR within 30 minutes was 98.50%. All independent variables selected for the study were statistically significant. Oral fast disintegrating tablets containing PDS nanoparticles could be the better choice for the pediatric patients that would result in better patient compliance. From this study, it can be concluded that fast disintegrating tablets could be a potential drug delivery technology for the management of asthma in pediatrics.

          Most cited references24

          • Record: found
          • Abstract: not found
          • Article: not found

          Physicochemical and morphological properties of size-controlled chitosan–tripolyphosphate nanoparticles

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Orally disintegrating mini-tablets (ODMTs)--a novel solid oral dosage form for paediatric use.

            The new European regulations on paediatric medicines and recent WHO recommendations have induced an increased need for research into novel child-appropriate dosage forms. The aim of this study was the development of orally disintegrating mini-tablets (ODMTs) as a suitable dosage form for paediatric patients. The suitability of five commercially available ready-to-use tableting excipients, Ludiflash, Parteck ODT, Pearlitol Flash, Pharmaburst 500 and Prosolv ODT, to be directly compressed into mini-tablets, with 2 mm in diameter, was examined. All of the excipients are based on co-processed mannitol. Drug-free ODMTs and ODMTs with a child-appropriate dose of hydrochlorothiazide were investigated. ODMTs could be produced with all investigated excipients. ODMTs with a sufficient crushing strength >7 N and a low friability <1% could be obtained, as well as ODMTs with a short simulated wetting test-time <5 s. ODMTs made of Ludiflash showed the best results with crushing strengths from 7.8 N up to 11.8 N and excellent simulated wetting test-times from 3.1 s to 5.0 s. For each excipient, ODMTs with accordance to the pharmacopoeial specification content uniformity could be obtained. The promising results indicate that orally disintegrating mini-tablets may serve as a novel platform technology for paediatrics in future.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Evaluation of biomaterial containing regenerated cellulose and chitosan incorporated with silver nanoparticles.

              Biomaterials are used in regenerative medicine, implantable materials, controlled release carriers or scaffolds for tissue engineering. In the present study, the composites containing regenerated cellulose (RC) and chitosan (Ch) impregnated with silver nanoparticles (AgNP) with and without antibiotic gentamicin (G) were prepared. The composites prepared were characterized for their physico-chemical and mechanical properties and the results have shown the composite nature. RC-Ch-Ag and RC-Ch-Ag-G composites were used as wound dressing materials in experimental wounds of rats. The healing pattern of the wounds was evaluated by planimetric studies, macroscopic observations, biochemical studies and mechanical properties. The results have shown faster healing pattern in the wounds treated with RC-Ch-Ag and RC-Ch-Ag-G composites compared to untreated control. This study revealed that RC-Ch-Ag composite might be a potential, economical wound dressing material and may be tried on the clinical wounds of animals before being applied on humans. Copyright © 2014 Elsevier B.V. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Drug Des Devel Ther
                Drug Des Devel Ther
                Drug Design, Development and Therapy
                Drug Design, Development and Therapy
                Dove Medical Press
                1177-8881
                2015
                20 November 2015
                : 9
                : 5815-5825
                Affiliations
                [1 ]College of Pharmacy, The Third Military Medical University, Chongqing, People’s Republic of China
                [2 ]Department of Pediatrics, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, People’s Republic of China
                Author notes
                Correspondence: Yan-Yan Cen, College of Pharmacy, The Third Military Medical University, No 30 Gaotanyan Street, Shapingba District, Chongqing 400038, People’s Republic of China, Tel/fax +86 373 440 2514, Email yanyancen62@ 123456hotmail.com
                Article
                dddt-9-5815
                10.2147/DDDT.S86075
                4662371
                c023c4f8-f429-4319-8389-970c604d4de2
                © 2015 Chen et al. This work is published by Dove Medical Press Limited, and licensed under Creative Commons Attribution – Non Commercial (unported, v3.0) License

                The full terms of the License are available at http://creativecommons.org/licenses/by-nc/3.0/. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                History
                Categories
                Original Research

                Pharmacology & Pharmaceutical medicine
                asthma,superdisintegrant,prednisolone,oral tablets,mcc,ccs,factorial design,anova

                Comments

                Comment on this article