28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Postprandial Antihyperglycemic And Antioxidant Activities of Acalypha indica Linn Stem Extract: An In-vivo Study

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background:

          α-glucosidase inhibitors controls postprandial hyperglycemia (PPHG) by lowering sharp rise in blood glucose levels after ingestion of carbohydrate rich meal in type 2 diabetic (T2D) individuals. Acalypha indica commonly known as Indian copper leaf is used in traditional medicinal system to treat various diseases. In our previous in-vitro investigation, methanolic extract of A. indica stems (AIS) proved to be an effective a-glucosidase inhibitor, antioxidant, and well tolerated in acute and subchronic toxicity studies in albino wistar rats

          Objective:

          In this perspective, this study was designed to evaluate postprandial antihyperglycemic potential of AIS in maltose, sucrose, and glucose loaded streptozotocin (STZ)-induced normal and diabetic rats. As, the acute hyperglycemia at postprandial period has more triggering effect on oxidative stress, study was also aimed to evaluate the antioxidant potential of AIS on STZ-induced Albino–Wistar rats.

          Materials and Methods:

          Rats were treated with AIS (300–600 mg/kg b.w.) to investigate effect of AIS in controling PPHG after carbohydrate loading. Hepatoprotective activity of AIS is evaluated in diabetic rats by treating them at the dosages 300–600 mg/kg b.w.

          Results:

          Studies revealed 69.10 and 80.35% blood glucose-lowering effect of AIS in maltose and sucrose loaded diabetic rats in comparison with the diabetic control group. AIS recovered the liver damage caused by streptozotocin

          Conclusion:

          The present study confirmed high potential of AIS in controling PPHG by inhibiting a-glucosidase enzyme in maltose and sucrose loaded diabetic rats. AIS also exhibited hepatoprotective activity in STZ-induced diabetic rats. Thus, AIS could be used as a nutraceutical supplement to treat T2D effectively.

          SUMMARY

          • AIS extract is effective in suppressing maltose and sucrose-induced postprandial hyperglycemic spikes in rats

          • AIS treat ment showed a 69.10 and80.35% blood glucose-lowering effect in maltose and sucrose loaded diabetic rats in comparison with the diabetic control group.

          • AIS also improved the antioxidant status in diabetic rats and also has recovered the liver damage caused by streptozotocin.

          • The α-glucosidase inhibitor isolated from AIS is a good supplement to control postprandial blood glucose level in the management of type 2 diabetes.

          Abbreviations used: AIS: Acalypha indica Stems, ALP: Alkaline Phosphatase, b/w: Body Weight, PPHG: Postprandial hyperglycemia, SE: Standard Error, SGOT: Serum glutamate oxaloacetate transaminase, SGPT: Serum glutamate pyruvate transaminase, SOD: Superoxide dismutase, STZ: Streptozotocin, TB: Total Bilirubin, T2D: Type 2 diabetes

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Selenium: biochemical role as a component of glutathione peroxidase.

          When hemolyzates from erythrocytes of selenium-deficient rats were incubated in vitro in the presence of ascorbate or H(2)O(2), added glutathione failed to protect the hemoglobin from oxidative damage. This occurred because the erythrocytes were practically devoid of glutathione-peroxidase activity. Extensively purified preparations of glutathione peroxidase contained a large part of the (75)Se of erythrocytes labeled in vivo. Many of the nutritional effects of selenium can be explained by its role in glutathione peroxidase.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Drug discovery from medicinal plants.

            Current research in drug discovery from medicinal plants involves a multifaceted approach combining botanical, phytochemical, biological, and molecular techniques. Medicinal plant drug discovery continues to provide new and important leads against various pharmacological targets including cancer, HIV/AIDS, Alzheimer's, malaria, and pain. Several natural product drugs of plant origin have either recently been introduced to the United States market, including arteether, galantamine, nitisinone, and tiotropium, or are currently involved in late-phase clinical trials. As part of our National Cooperative Drug Discovery Group (NCDDG) research project, numerous compounds from tropical rainforest plant species with potential anticancer activity have been identified. Our group has also isolated several compounds, mainly from edible plant species or plants used as dietary supplements, that may act as chemopreventive agents. Although drug discovery from medicinal plants continues to provide an important source of new drug leads, numerous challenges are encountered including the procurement of plant materials, the selection and implementation of appropriate high-throughput screening bioassays, and the scale-up of active compounds.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              α-glucosidase inhibitors from plants: A natural approach to treat diabetes

              Diabetes is a common metabolic disease characterized by abnormally high plasma glucose levels, leading to major complications, such as diabetic neuropathy, retinopathy, and cardiovascular diseases. One of the effective managements of diabetes mellitus, in particular, non–insulin-dependent diabetes mellitus (NIDDM) to decrease postprandial hyperglycemia, is to retard the absorption of glucose by inhibition of carbohydrate hydrolyzing enzymes, such as α-glucosidase and α-amylase, in the digestive organs. α-Glucosidase is the key enzyme catalyzing the final step in the digestive process of carbohydrates. Hence, α-glucosidase inhibitors can retard the liberation of d-glucose from dietary complex carbohydrates and delay glucose absorption, resulting in reduced postprandial plasma glucose levels and suppression of postprandial hyperglycemia. In recent years, many efforts have been made to identify effective α-glucosidase inhibitors from natural sources in order to develop a physiologic functional food or lead compounds for use against diabetes. Many α-glucosidase inhibitors that are phytoconstituents, such as flavonoids, alkaloids, terpenoids,anthocyanins, glycosides, phenolic compounds, and so on, have been isolated from plants. In the present review, we focus on the constituents isolated from different plants having α-glucosidase inhibitory potency along with IC50 values.
                Bookmark

                Author and article information

                Journal
                Pharmacogn Mag
                Pharmacogn Mag
                PM
                Pharmacognosy Magazine
                Medknow Publications & Media Pvt Ltd (India )
                0973-1296
                0976-4062
                July 2016
                : 12
                : Suppl 4
                : S475-S481
                Affiliations
                [1]Molecular and Microbiology Research Laboratory, Environmental Biotechnology Division, School of Bio Sciences and Technology, VIT University, Vellore, Tamil Nadu, India
                Author notes
                Correspondence: Dr. K.V. Bhaskara Rao Department of Biomedical Sciences School of Bio Sciences and Technology, VIT University, Vellore, Tamil Nadu, India. E-mail: kvbhaskararao@ 123456vit.ac.in
                Article
                PM-12-475
                10.4103/0973-1296.191461
                5068127
                c02f02ee-1be6-45f9-89b1-989a8d4efbff
                Copyright: © Pharmacognosy Magazine

                This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms.

                History
                : 29 February 2016
                : 02 April 2016
                : 30 September 2016
                Categories
                Original Article

                Pharmacology & Pharmaceutical medicine
                albino–wistar rats,acalypha indica,antioxidant,a-glucosidase inhibitor,postprandial hyperglycemia

                Comments

                Comment on this article