41
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      CD36 in chronic kidney disease: novel insights and therapeutic opportunities

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          CD36 (also known as scavenger receptor B2) is a multifunctional receptor that mediates the binding and cellular uptake of long-chain fatty acids, oxidized lipids and phospholipids, advanced oxidation protein products, thrombospondin and advanced glycation end products, and has roles in lipid accumulation, inflammatory signalling, energy reprogramming, apoptosis and kidney fibrosis. Renal CD36 is mainly expressed in tubular epithelial cells, podocytes and mesangial cells, and is markedly upregulated in the setting of chronic kidney disease (CKD). As fatty acids are the preferred energy source for proximal tubule cells, a reduction in fatty acid oxidation in CKD affects kidney lipid metabolism by disrupting the balance between fatty acid synthesis, uptake and consumption. The outcome is intracellular lipid accumulation, which has an important role in the pathogenesis of kidney fibrosis. In experimental models, antagonist blockade or genetic knockout of CD36 prevents kidney injury, suggesting that CD36 could be a novel target for therapy. Here, we discuss the regulation and post-translational modification of CD36, its role in renal pathophysiology and its potential as a biomarker and as a therapeutic target for the prevention of kidney fibrosis.

          Related collections

          Most cited references194

          • Record: found
          • Abstract: found
          • Article: found

          Targeting metastasis-initiating cells through the fatty acid receptor CD36.

          The fact that the identity of the cells that initiate metastasis in most human cancers is unknown hampers the development of antimetastatic therapies. Here we describe a subpopulation of CD44(bright) cells in human oral carcinomas that do not overexpress mesenchymal genes, are slow-cycling, express high levels of the fatty acid receptor CD36 and lipid metabolism genes, and are unique in their ability to initiate metastasis. Palmitic acid or a high-fat diet specifically boosts the metastatic potential of CD36(+) metastasis-initiating cells in a CD36-dependent manner. The use of neutralizing antibodies to block CD36 causes almost complete inhibition of metastasis in immunodeficient or immunocompetent orthotopic mouse models of human oral cancer, with no side effects. Clinically, the presence of CD36(+) metastasis-initiating cells correlates with a poor prognosis for numerous types of carcinomas, and inhibition of CD36 also impairs metastasis, at least in human melanoma- and breast cancer-derived tumours. Together, our results indicate that metastasis-initiating cells particularly rely on dietary lipids to promote metastasis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Defective fatty acid oxidation in renal tubular epithelial cells has a key role in kidney fibrosis development.

            Renal fibrosis is the histological manifestation of a progressive, usually irreversible process causing chronic and end-stage kidney disease. We performed genome-wide transcriptome studies of a large cohort (n = 95) of normal and fibrotic human kidney tubule samples followed by systems and network analyses and identified inflammation and metabolism as the top dysregulated pathways in the diseased kidneys. In particular, we found that humans and mouse models with tubulointerstitial fibrosis had lower expression of key enzymes and regulators of fatty acid oxidation (FAO) and higher intracellular lipid deposition compared to controls. In vitro experiments indicated that inhibition of FAO in tubule epithelial cells caused ATP depletion, cell death, dedifferentiation and intracellular lipid deposition, phenotypes observed in fibrosis. In contrast, restoring fatty acid metabolism by genetic or pharmacological methods protected mice from tubulointerstitial fibrosis. Our results raise the possibility that correcting the metabolic defect in FAO may be useful for preventing and treating chronic kidney disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Vertebrate protein glycosylation: diversity, synthesis and function.

              Protein glycosylation is a ubiquitous post-translational modification found in all domains of life. Despite their significant complexity in animal systems, glycan structures have crucial biological and physiological roles, from contributions in protein folding and quality control to involvement in a large number of biological recognition events. As a result, they impart an additional level of 'information content' to underlying polypeptide structures. Improvements in analytical methodologies for dissecting glycan structural diversity, along with recent developments in biochemical and genetic approaches for studying glycan biosynthesis and catabolism, have provided a greater understanding of the biological contributions of these complex structures in vertebrates.
                Bookmark

                Author and article information

                Journal
                Nature Reviews Nephrology
                Nat Rev Nephrol
                Springer Science and Business Media LLC
                1759-5061
                1759-507X
                December 2017
                September 18 2017
                December 2017
                : 13
                : 12
                : 769-781
                Article
                10.1038/nrneph.2017.126
                28919632
                c02f5f77-5257-4b9e-bfd7-139ccacbfc22
                © 2017

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article