+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Selenoprotein T Exerts an Essential Oxidoreductase Activity That Protects Dopaminergic Neurons in Mouse Models of Parkinson's Disease


      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Aims: Oxidative stress is central to the pathogenesis of Parkinson's disease (PD), but the mechanisms involved in the control of this stress in dopaminergic cells are not fully understood. There is increasing evidence that selenoproteins play a central role in the control of redox homeostasis and cell defense, but the precise contribution of members of this family of proteins during the course of neurodegenerative diseases is still elusive. Results: We demonstrated first that selenoprotein T (SelT) whose gene disruption is lethal during embryogenesis, exerts a potent oxidoreductase activity. In the SH-SY5Y cell model of dopaminergic neurons, both silencing and overexpression of SelT affected oxidative stress and cell survival. Treatment with PD-inducing neurotoxins such as 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) or rotenone triggered SelT expression in the nigrostriatal pathway of wild-type mice, but provoked rapid and severe parkinsonian-like motor defects in conditional brain SelT-deficient mice. This motor impairment was associated with marked oxidative stress and neurodegeneration and decreased tyrosine hydroxylase activity and dopamine levels in the nigrostriatal system. Finally, in PD patients, we report that SelT is tremendously increased in the caudate putamen tissue. Innovation: These results reveal the activity of a novel selenoprotein enzyme that protects dopaminergic neurons against oxidative stress and prevents early and severe movement impairment in animal models of PD. Conclusions: Our findings indicate that selenoproteins such as SelT play a crucial role in the protection of dopaminergic neurons against oxidative stress and cell death, providing insight into the molecular underpinnings of this stress in PD. Antioxid. Redox Signal. 24, 557–574.

          Related collections

          Most cited references 44

          • Record: found
          • Abstract: found
          • Article: not found

          Disruption of the glucocorticoid receptor gene in the nervous system results in reduced anxiety.

          The glucocorticoid receptor (Gr, encoded by the gene Grl1) controls transcription of target genes both directly by interaction with DNA regulatory elements and indirectly by cross-talk with other transcription factors. In response to various stimuli, including stress, glucocorticoids coordinate metabolic, endocrine, immune and nervous system responses and ensure an adequate profile of transcription. In the brain, Gr has been proposed to modulate emotional behaviour, cognitive functions and addictive states. Previously, these aspects were not studied in the absence of functional Gr because inactivation of Grl1 in mice causes lethality at birth (F.T., C.K. and G.S., unpublished data). Therefore, we generated tissue-specific mutations of this gene using the Cre/loxP -recombination system. This allowed us to generate viable adult mice with loss of Gr function in selected tissues. Loss of Gr function in the nervous system impairs hypothalamus-pituitary-adrenal (HPA)-axis regulation, resulting in increased glucocorticoid (GC) levels that lead to symptoms reminiscent of those observed in Cushing syndrome. Conditional mutagenesis of Gr in the nervous system provides genetic evidence for the importance of Gr signalling in emotional behaviour because mutant animals show an impaired behavioural response to stress and display reduced anxiety.
            • Record: found
            • Abstract: found
            • Article: not found

            Missing pieces in the Parkinson's disease puzzle.

            Parkinson's disease is a neurodegenerative process characterized by numerous motor and nonmotor clinical manifestations for which effective, mechanism-based treatments remain elusive. Here we discuss a series of critical issues that we think researchers need to address to stand a better chance of solving the different challenges posed by this pathology.
              • Record: found
              • Abstract: found
              • Article: not found

              Parkinson's disease.

               Bobby Thomas,  M. Beal (2007)
              Parkinson's disease (PD) is a chronic progressive neurodegenerative movement disorder characterized by a profound and selective loss of nigrostriatal dopaminergic neurons. Clinical manifestations of this complex disease include motor impairments involving resting tremor, bradykinesia, postural instability, gait difficulty and rigidity. Current medications only provide symptomatic relief and fail to halt the death of dopaminergic neurons. A major hurdle in development of neuroprotective therapies are due to limited understanding of disease processes leading to death of dopaminergic neurons. While the etiology of dopaminergic neuronal demise is elusive, a combination of genetic susceptibilities and environmental factors seems to play a critical role. The majority of PD cases are sporadic however, the discovery of genes linked to rare familial forms of disease (encoding alpha-synuclein, parkin, DJ-1, PINK-1 and LRRK2) and studies from experimental animal models has provided crucial insights into molecular mechanisms in disease pathogenesis and identified probable targets for therapeutic intervention. Recent findings implicate mitochondrial dysfunction, oxidative damage, abnormal protein accumulation and protein phosphorylation as key molecular mechanisms compromising dopamine neuronal function and survival as the underlying cause of pathogenesis in both sporadic and familial PD. In this review we provide an overview of the most relevant findings made by the PD research community in the last year and discuss how these significant findings improved our understanding of events leading to nigrostriatal dopaminergic degeneration, and identification of potential cell survival pathways that could serve as targets for neuroprotective therapies in preventing this disabling neurological illness.

                Author and article information

                Antioxid Redox Signal
                Antioxid. Redox Signal
                Antioxidants & Redox Signaling
                Mary Ann Liebert, Inc. (140 Huguenot Street, 3rd FloorNew Rochelle, NY 10801USA )
                10 April 2016
                10 April 2016
                : 24
                : 11
                : 557-574
                [ 1 ]Inserm U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication , Mont-Saint-Aignan, France.
                [ 2 ]Com UE, Normandy University of Rouen , France.
                [ 3 ]Institute for Research and Innovation in Biomedicine, University of Rouen , Mont-Saint-Aignan, Rouen, France.
                [ 4 ]Faculty of Sciences, University of Rouen , Mont-Saint-Aignan, France
                [ 5 ]Department of Biology, Faculty of Sciences, Abdelmalek Essaadi University , Tetouan, Morocco.
                Author notes
                Address correspondence to: Dr. Youssef Anouar, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication Inserm U982, IRIB, University of Rouen, Place Emile Blondel, Mont-Saint-Aignan Cedex 76821, France

                E-mail: youssef.anouar@ 123456univ-rouen.fr
                © Loubna Boukhzar, et al., 2016; Published by Mary Ann Liebert, Inc.

                This Open Access article is distributed under the terms of the Creative Commons Attribution Noncommercial License ( http://creativecommons.org/licenses/by-nc/4.0/) which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

                Page count
                Figures: 9, References: 59, Pages: 18
                Original Research Communications


                Comment on this article